Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23110010-7    https://doi.org/10.11896/cldb.23110010
  高分子与聚合物基复合材料 |
CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究
周兰1,*, 李光奇1, 安国升2, 王云龙1, 朱瑞彪1, 钟云3
1 兰州理工大学机电工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 中核四○四有限公司,甘肃 嘉峪关 732850
Three-dimensional Micro-scale Finite Element Simulation Study on Chip Formation Mechanism of CFRP Helical Milling
ZHOU Lan1,*, LI Guangqi1, AN Guosheng2, WANG Yunlong1, ZHU Ruibiao1, ZHONG Yun3
1 School of Electromechanical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 China National Nuclear Industry Corporation 404, Jiayuguan 732850, Gansu, China
下载:  全 文 ( PDF ) ( 4306KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维增强树脂基复合材料(Carbon fiber reinforced plastic/polymer,CFRP)螺旋铣孔过程切削力变化、残余应力分布与断裂机制的宏观研究无法反映刀具与碳纤维增强相、基体与界面相之间相互作用的瞬态切削特性。本工作基于螺旋铣孔运动学原理,采用正交切削法构建CFRP螺旋铣孔切屑成形过程的三维微观有限元切削模型,通过分析CFRP不同纤维方向角θ(0°、45°、90°、135°)时、切削速度与切削厚度对切削力、残余应力以及纤维方向对断裂行为的影响规律,最后揭示CFRP螺旋铣孔的成屑机制。结果表明:θ=90°时,周向力不受切削速度、切削厚度的影响,其增值最大;当切削厚度相同时,θ=0°的周向力增值最小;当切削速度相同时,θ=45°的周向力增值最小。当θ为0°、45°、135°时,残余应力分布情况不受切削厚度的影响,θ为0°、135°分布在已加工表面,θ=45°集中分布在已加工表面下方;当θ=90°时,随着切削厚度的增大,残余应力分布扩展至整个工件。θ为0°、45°的CFRP断裂行为是剪切断裂和弯曲断裂共同作用的结果;θ=90°时,以剪切断裂为主;θ=135°时,以弯曲断裂为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周兰
李光奇
安国升
王云龙
朱瑞彪
钟云
关键词:  CFRP  螺旋铣  RVE模型  纤维方向角θ  断裂行为    
Abstract: The instantaneous cutting characteristics of interactions between cutter and the carbon fiber reinforced phase, matrix and the interface phase can’t be reflected only by macro-scale studying of cutting force variation, residual stress distribution and fracture mechanism of carbon fiber reinforced plastic/polymer (CFRP) during helical milling process. In this work, based on the principle of helical milling kinematics, a three-dimensional micro-scale finite element cutting model of chip forming process in helical milling of CFRP was established by using the orthogonal cutting method. Analyzed the influence rules of cutting speed and cutting depth on cutting force, residual stress and fracture behavior of fiber orientation of CFRP with different fiber orientations θ (0°, 45°, 90°, 135°), finally revealed the chip formation mechanisms of helical milling for CFRP. The results showed that: when θ=90°, the peripheral cutting force wasn’t affected by cutting speed and cutting depth with its maximum increment. when the cutting depth was constant, the minimum force increment was obtained with θ=0°; and when the cutting speed was constant, the minimum force increment was obtained with θ=45°. When θ=0°, 45° and 135°, the residual stress wasn’t affected by the cutting depth, the resi-dual stress was distributed on the machined surface with θ=0° and 135°, when θ=45°, the residual stress converged below the machined surface; when θ=90°, the residual stress extended all the workpiece with the increase of cutting depth. The fracture behavior of CFRP with θ=0° and 45° was resulted from shear fracture and bend fracture; when θ=90° and θ=135°, it was dominated by shear and bend fracture, respectively.
Key words:  CFRP    helical milling    RVE model    fiber orientation θ    fracture behavior
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52265049);甘肃省青年博士基金(2021QB-043)
通讯作者:  * 周兰,兰州理工大学机电工程学院副教授、硕士研究生导师。2017年浙江大学机械制造及其自动化专业博士毕业。目前主要从事航空难加工材料的先进切削技术与刀具优化设计研究。发表论文20余篇,包括The International Journal of Advanced Manufacturing Technology、Transactions of Nonferrous Metals Society of China、《复合材料学报》等,授权发明专利5项。 11225012@zju.edu.cn   
引用本文:    
周兰, 李光奇, 安国升, 王云龙, 朱瑞彪, 钟云. CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究[J]. 材料导报, 2024, 38(24): 23110010-7.
ZHOU Lan, LI Guangqi, AN Guosheng, WANG Yunlong, ZHU Ruibiao, ZHONG Yun. Three-dimensional Micro-scale Finite Element Simulation Study on Chip Formation Mechanism of CFRP Helical Milling. Materials Reports, 2024, 38(24): 23110010-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110010  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23110010
1 Abena A, Soo S L, Essa K. Composite Structures, 2017, 168, 65.
2 Liu L, Wang M, Kong L, et al. Materials Reports, 2018, 32(Z2), 329(in Chinese).
刘雷, 王敏, 孔谅, 等. 材料导报, 2018, 32(Z2), 329.
3 Zhou L. Dedicated cutting tool design and research on hole quality for orbital drilling of aeronautical difficult-to-cut materials. Ph. D. Thesis, Zhejiang University, China, 2017 (in Chinese).
周兰. 航空难加工材料螺旋铣制孔专用刀具设计及其质量研究. 博士学位论文, 浙江大学, 2017.
4 An Q L, Zhong B F, Wang X F, et al. Journal of Manufacturing Processes, 2021, 64, 409.
5 He Y L, Zhang J W, Huang C F, et al. Materials Reports, 2018, 32(13), 2288(in Chinese).
贺雍律, 张鉴炜, 黄春芳, 等. 材料导报, 2018, 32(13), 2288.
6 Luo R Q, Liu Y Q, Liao Y Q, et al. Materials Reports, 2021, 35(Z2), 558(in Chinese).
罗锐祺, 刘勇琼, 廖英强, 等. 材料导报, 2021, 35(Z2), 558.
7 Yang G L, Dong Z G, Kang R K, et al. Acta Aeronautica et Astronautica Sinica, 2020, 41(7), 18(in Chinese).
杨国林, 董志刚, 康仁科, 等. 航空学报, 2020, 41(7), 18.
8 Wang H Y, Jin T, Zhou Z T, et al. Journal of Northeastern University(Natural Science), 2022, 43(2), 214(in Chinese).
王海艳, 金天, 周秩同, 等. 东北大学学报(自然科学版), 2022, 43(2), 214.
9 Zhang S, Hu Y X, Yao Z Q, et al. Modular Machine Tool & Automatic Manufacturing Technique, 2014, 6(6), 8(in Chinese).
张硕, 胡永祥, 姚振强, 等. 组合机床与自动化加工技术, 2014, 6(6), 8.
10 Liu G, Zhang H, Wang Y F, et al. Acta Materiae Compositae Sinica, 2014, 31(5), 1292 (in Chinese).
刘刚, 张恒, 王亚飞, 等. 复合材料学报, 2014, 31(5), 1292.
11 Xie H L, Dong Z G, Kang R K, et al. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2), 328 (in Chinese).
谢海龙, 董志刚, 康仁科, 等. 北京航空航天大学学报, 2017, 43(2), 328.
12 Wu W Z, Liu X F, Cui X, et al. Aeronautical Manufacturing Technology, 2022, 65(22), 60 (in Chinese).
武卫洲, 刘雪峰, 崔鑫, 等. 航空制造技术, 2022, 65(22), 60.
13 Sun M H, Guo Y Q, Tang P P, et al. Materials Reports, 2015, 29(4), 64 (in Chinese).
孙民航, 郭玉琴, 汤鹏鹏, 等. 材料导报, 2015, 29(4), 64.
14 Wang F J, Gu T Y, Wang X N, et al. Applied Composite Materials, 2021, 28(4), 991.
15 Qi Z C, Liu S N, Cheng H, et al. Journal of Mechanical Engineering, 2016, 52(15), 170 (in Chinese).
齐振超, 刘书暖, 程晖, 等. 机械工程学报, 2016, 52(15), 170.
16 Tang W L, Chen Y, Yang H J, et al. Applied Composite Materials, 2018, 25(6), 1419.
17 Gao H Q, Jia Z Y, Wang F J, et al. Acta Materiae Compositae Sinica, 2016, 33(4), 758(in Chinese).
高汉卿, 贾振元, 王福吉, 等. 复合材料学报, 2016, 33(4), 758.
18 Jiang H, Ren Y, Liu Z. International Journal of Mechanical Sciences, 2019, 156, 1.
19 Dong H Y, Chen G L, Zhou L, et al. Acta Materiae Compositae Sinica, 2017, 34(3), 540 (in Chinese).
董辉跃, 陈光林, 周兰, 等. 复合材料学报, 2017, 34(3), 540.
20 Meng Q X, Jiang S S, Liu S N, et al. Journal of Mechanical Engineering, 2018, 54(11), 110 (in Chinese).
孟庆勋, 姜寿山, 刘书暖, 等. 机械工程学报, 2018, 54(11), 110.
21 Chen G, Liu J, Ge J Y, et al. Journal of Mechanical Engineering, 2021, 57(1), 199(in Chinese).
陈光, 刘见, 戈家影, 等. 机械工程学报, 2021, 57(1), 199.
22 Qin X D, Bao Z W, Wu W Z, et al. International Journal of Advanced Manufacturing Technology, 2022, 122, 1083.
23 Xiao J Z. Mechanics modeling and optimization of technological parameters for cutting process of CFRP composites. Ph. D. Thesis, Zhejiang University, China, 2018 (in Chinese).
肖建章. 碳纤维复合材料切削加工力学建模与工艺参数优化研究. 博士学位论文, 浙江大学, 2018.
24 Littel J, Ruggeri C, Golberg R, et al. Journal of Aerospace Engineering, 2008, 21, 162.
25 Rao G, Mahajan P, Bhatbagar N. Composites Science and Technology, 2007, 67, 2271.
26 Phadnis V A, Makhdu F, Roy A, et al. Composites Part A: Applied Science and Manufacturing, 2013, 47, 41.
27 Yan X Y, Reine J, Bacca M, et al. Composite Structures, 2019, 220, 460.
28 Hobbribrunken T, Fiedler B, Hojo M, et al. Composites Science and Technology, 2005, 65(10), 1626.
29 Liu C L, Ren J X, Shi K N, et al. Composite Structures, 2023, 306, 116585.
30 Abena A, Essa K. Composite Structures, 2019, 218, 174.
31 Xu W X, Zhang L C, Wu Y B. Machining Science and Technology, 2016, 20(2), 312.
32 Caprino G, Santo L, Nele L. Composites Part A, 1998, 29(8), 887.
[1] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[2] 王俊, 相泽辉, 牛建刚, 许文明. CFRP条带和混凝土帆布联合加固混凝土短柱声发射性能研究[J]. 材料导报, 2024, 38(14): 22100117-8.
[3] 李胤, 宋远佳, 刘春华. 基于热成像的CFRP损伤检测与演化规律研究综述[J]. 材料导报, 2022, 36(Z1): 22010161-9.
[4] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[5] 杨荣周, 陈佩圆, 葛进进, 徐颖, 王佳, 刘家兴, 谢昊天. 增幅循环荷载下CFRP约束型橡胶砂浆的疲劳特征[J]. 材料导报, 2022, 36(9): 21040223-10.
[6] 高婧, 罗城. 基于SWT模型和威布尔分布的CFRP环带微动疲劳寿命预测[J]. 材料导报, 2021, 35(16): 16015-16020.
[7] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[8] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[9] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[10] 谢桂华, 孙悦, 严鹏, 刘炀, 翁煜. 湿/热条件下的CFRP筋粘结型锚具性能研究[J]. 材料导报, 2020, 34(22): 22178-22184.
[11] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed