Three-dimensional Micro-scale Finite Element Simulation Study on Chip Formation Mechanism of CFRP Helical Milling
ZHOU Lan1,*, LI Guangqi1, AN Guosheng2, WANG Yunlong1, ZHU Ruibiao1, ZHONG Yun3
1 School of Electromechanical Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 3 China National Nuclear Industry Corporation 404, Jiayuguan 732850, Gansu, China
Abstract: The instantaneous cutting characteristics of interactions between cutter and the carbon fiber reinforced phase, matrix and the interface phase can’t be reflected only by macro-scale studying of cutting force variation, residual stress distribution and fracture mechanism of carbon fiber reinforced plastic/polymer (CFRP) during helical milling process. In this work, based on the principle of helical milling kinematics, a three-dimensional micro-scale finite element cutting model of chip forming process in helical milling of CFRP was established by using the orthogonal cutting method. Analyzed the influence rules of cutting speed and cutting depth on cutting force, residual stress and fracture behavior of fiber orientation of CFRP with different fiber orientations θ (0°, 45°, 90°, 135°), finally revealed the chip formation mechanisms of helical milling for CFRP. The results showed that: when θ=90°, the peripheral cutting force wasn’t affected by cutting speed and cutting depth with its maximum increment. when the cutting depth was constant, the minimum force increment was obtained with θ=0°; and when the cutting speed was constant, the minimum force increment was obtained with θ=45°. When θ=0°, 45° and 135°, the residual stress wasn’t affected by the cutting depth, the resi-dual stress was distributed on the machined surface with θ=0° and 135°, when θ=45°, the residual stress converged below the machined surface; when θ=90°, the residual stress extended all the workpiece with the increase of cutting depth. The fracture behavior of CFRP with θ=0° and 45° was resulted from shear fracture and bend fracture; when θ=90° and θ=135°, it was dominated by shear and bend fracture, respectively.
通讯作者:
* 周兰,兰州理工大学机电工程学院副教授、硕士研究生导师。2017年浙江大学机械制造及其自动化专业博士毕业。目前主要从事航空难加工材料的先进切削技术与刀具优化设计研究。发表论文20余篇,包括The International Journal of Advanced Manufacturing Technology、Transactions of Nonferrous Metals Society of China、《复合材料学报》等,授权发明专利5项。 11225012@zju.edu.cn
引用本文:
周兰, 李光奇, 安国升, 王云龙, 朱瑞彪, 钟云. CFRP螺旋铣孔成屑机制的三维微观有限元仿真研究[J]. 材料导报, 2024, 38(24): 23110010-7.
ZHOU Lan, LI Guangqi, AN Guosheng, WANG Yunlong, ZHU Ruibiao, ZHONG Yun. Three-dimensional Micro-scale Finite Element Simulation Study on Chip Formation Mechanism of CFRP Helical Milling. Materials Reports, 2024, 38(24): 23110010-7.
1 Abena A, Soo S L, Essa K. Composite Structures, 2017, 168, 65. 2 Liu L, Wang M, Kong L, et al. Materials Reports, 2018, 32(Z2), 329(in Chinese). 刘雷, 王敏, 孔谅, 等. 材料导报, 2018, 32(Z2), 329. 3 Zhou L. Dedicated cutting tool design and research on hole quality for orbital drilling of aeronautical difficult-to-cut materials. Ph. D. Thesis, Zhejiang University, China, 2017 (in Chinese). 周兰. 航空难加工材料螺旋铣制孔专用刀具设计及其质量研究. 博士学位论文, 浙江大学, 2017. 4 An Q L, Zhong B F, Wang X F, et al. Journal of Manufacturing Processes, 2021, 64, 409. 5 He Y L, Zhang J W, Huang C F, et al. Materials Reports, 2018, 32(13), 2288(in Chinese). 贺雍律, 张鉴炜, 黄春芳, 等. 材料导报, 2018, 32(13), 2288. 6 Luo R Q, Liu Y Q, Liao Y Q, et al. Materials Reports, 2021, 35(Z2), 558(in Chinese). 罗锐祺, 刘勇琼, 廖英强, 等. 材料导报, 2021, 35(Z2), 558. 7 Yang G L, Dong Z G, Kang R K, et al. Acta Aeronautica et Astronautica Sinica, 2020, 41(7), 18(in Chinese). 杨国林, 董志刚, 康仁科, 等. 航空学报, 2020, 41(7), 18. 8 Wang H Y, Jin T, Zhou Z T, et al. Journal of Northeastern University(Natural Science), 2022, 43(2), 214(in Chinese). 王海艳, 金天, 周秩同, 等. 东北大学学报(自然科学版), 2022, 43(2), 214. 9 Zhang S, Hu Y X, Yao Z Q, et al. Modular Machine Tool & Automatic Manufacturing Technique, 2014, 6(6), 8(in Chinese). 张硕, 胡永祥, 姚振强, 等. 组合机床与自动化加工技术, 2014, 6(6), 8. 10 Liu G, Zhang H, Wang Y F, et al. Acta Materiae Compositae Sinica, 2014, 31(5), 1292 (in Chinese). 刘刚, 张恒, 王亚飞, 等. 复合材料学报, 2014, 31(5), 1292. 11 Xie H L, Dong Z G, Kang R K, et al. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2), 328 (in Chinese). 谢海龙, 董志刚, 康仁科, 等. 北京航空航天大学学报, 2017, 43(2), 328. 12 Wu W Z, Liu X F, Cui X, et al. Aeronautical Manufacturing Technology, 2022, 65(22), 60 (in Chinese). 武卫洲, 刘雪峰, 崔鑫, 等. 航空制造技术, 2022, 65(22), 60. 13 Sun M H, Guo Y Q, Tang P P, et al. Materials Reports, 2015, 29(4), 64 (in Chinese). 孙民航, 郭玉琴, 汤鹏鹏, 等. 材料导报, 2015, 29(4), 64. 14 Wang F J, Gu T Y, Wang X N, et al. Applied Composite Materials, 2021, 28(4), 991. 15 Qi Z C, Liu S N, Cheng H, et al. Journal of Mechanical Engineering, 2016, 52(15), 170 (in Chinese). 齐振超, 刘书暖, 程晖, 等. 机械工程学报, 2016, 52(15), 170. 16 Tang W L, Chen Y, Yang H J, et al. Applied Composite Materials, 2018, 25(6), 1419. 17 Gao H Q, Jia Z Y, Wang F J, et al. Acta Materiae Compositae Sinica, 2016, 33(4), 758(in Chinese). 高汉卿, 贾振元, 王福吉, 等. 复合材料学报, 2016, 33(4), 758. 18 Jiang H, Ren Y, Liu Z. International Journal of Mechanical Sciences, 2019, 156, 1. 19 Dong H Y, Chen G L, Zhou L, et al. Acta Materiae Compositae Sinica, 2017, 34(3), 540 (in Chinese). 董辉跃, 陈光林, 周兰, 等. 复合材料学报, 2017, 34(3), 540. 20 Meng Q X, Jiang S S, Liu S N, et al. Journal of Mechanical Engineering, 2018, 54(11), 110 (in Chinese). 孟庆勋, 姜寿山, 刘书暖, 等. 机械工程学报, 2018, 54(11), 110. 21 Chen G, Liu J, Ge J Y, et al. Journal of Mechanical Engineering, 2021, 57(1), 199(in Chinese). 陈光, 刘见, 戈家影, 等. 机械工程学报, 2021, 57(1), 199. 22 Qin X D, Bao Z W, Wu W Z, et al. International Journal of Advanced Manufacturing Technology, 2022, 122, 1083. 23 Xiao J Z. Mechanics modeling and optimization of technological parameters for cutting process of CFRP composites. Ph. D. Thesis, Zhejiang University, China, 2018 (in Chinese). 肖建章. 碳纤维复合材料切削加工力学建模与工艺参数优化研究. 博士学位论文, 浙江大学, 2018. 24 Littel J, Ruggeri C, Golberg R, et al. Journal of Aerospace Engineering, 2008, 21, 162. 25 Rao G, Mahajan P, Bhatbagar N. Composites Science and Technology, 2007, 67, 2271. 26 Phadnis V A, Makhdu F, Roy A, et al. Composites Part A: Applied Science and Manufacturing, 2013, 47, 41. 27 Yan X Y, Reine J, Bacca M, et al. Composite Structures, 2019, 220, 460. 28 Hobbribrunken T, Fiedler B, Hojo M, et al. Composites Science and Technology, 2005, 65(10), 1626. 29 Liu C L, Ren J X, Shi K N, et al. Composite Structures, 2023, 306, 116585. 30 Abena A, Essa K. Composite Structures, 2019, 218, 174. 31 Xu W X, Zhang L C, Wu Y B. Machining Science and Technology, 2016, 20(2), 312. 32 Caprino G, Santo L, Nele L. Composites Part A, 1998, 29(8), 887.