Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 22110069-8    https://doi.org/10.11896/cldb.22110069
  金属与金属基复合材料 |
热塑性复合材料大长宽比接头超声波焊接研究进展
姚福林1,2,*, 褚泽南1,2, 景冲1,2, 赵越1,2, 魏源1,2
1 天津市现代机电装备技术重点实验室,天津 300387
2 天津工业大学机械工程学院,天津 300387
Progress in Ultrasonic Welding of Thermoplastic Composites with Large Aspect Ratio Joints
YAO Fulin1,2,*, CHU Zenan1,2, JING Chong1,2, ZHAO Yue1,2, WEI Yuan1,2
1 Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
2 School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 18322KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热塑性复合材料由于密度低、力学性能优越、加工成本低且可回收,已被广泛应用于汽车工业、航空航天、医疗器械等领域。超声波焊接是较为常用的复合材料连接技术,其焊接速度快,焊接强度高,密封性好,清洁无污染,成本低廉。生产实践中,超声波焊接以单点静态焊接为主,焊接面积小。而热塑性复合材料结构件的连接往往需要更大尺寸的焊接接头,单点静态焊接技术难以满足生产需求。本文在总结现有超声波焊接搭接形式和接头类型的基础上,提出大长宽比接头的概念,对比大尺寸截面变幅杆焊接、超声波多点焊接、超声波连续焊接等大长宽比接头超声波焊接的解决方法,总结其研究进展,展望未来热塑性复合材料大长宽比接头超声波焊接需解决的问题和发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚福林
褚泽南
景冲
赵越
魏源
关键词:  超声波焊接  复合材料  大长宽比接头  变幅杆  连续焊接    
Abstract: Thermoplastic composites are widely used in automotive industry, aerospace, medical equipment and other fields due to their low density, superior mechanical properties, low processing cost and recyclability. Ultrasonic welding is a commonly used composite material connection technology. It not only has fast welding speed, high welding strength, but also has good sealing performance, clean and pollution-free. In production practice, ultrasonic welding is mainly based on single-point static welding, and the welding area is defective. However, thermoplastic composite structural parts often require larger-sized welded joints, and single-point static welding is difficult to meet production needs. On the basis of summarizing the existing ultrasonic welding lap forms and joint types, this paper puts forward the concept of large aspect ratio joint. The solutions of ultrasonic welding of large length-width ratio joints such as large size cross-section horn welding, multi-point ultrasonic welding and continuous ultrasonic welding are compared. The research progress of joints with large aspect ratio is summarized, and the problems to be solved and the development trend of ultrasonic welding in the future are prospected.
Key words:  ultrasonic welding    composite materials    large aspect ratio joints    booster    continuous ultrasonic welding
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB332  
基金资助: 天津市自然科学基金(19JCQNJC02800)
通讯作者:  *姚福林,工学博士,硕士研究生导师,天津市“131”创新型人才培养工程第三层次人选,现为天津工业大学机械工程学院讲师,目前主要研究领域为复合材料成型与装备。发表论文9篇。yaofulin111@163.com   
引用本文:    
姚福林, 褚泽南, 景冲, 赵越, 魏源. 热塑性复合材料大长宽比接头超声波焊接研究进展[J]. 材料导报, 2024, 38(16): 22110069-8.
YAO Fulin, CHU Zenan, JING Chong, ZHAO Yue, WEI Yuan. Progress in Ultrasonic Welding of Thermoplastic Composites with Large Aspect Ratio Joints. Materials Reports, 2024, 38(16): 22110069-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110069  或          http://www.mater-rep.com/CN/Y2024/V38/I16/22110069
1 Liu B, An W L, Ni N N. Aeronautical Manufacturing Technology, 2021, 64(22), 80 (in Chinese).
刘彬, 安卫龙, 倪楠楠. 航空制造技术, 2021, 64(22), 80.
2 Zhao Y, Liu H S. Journal of Materials Engineering, 2020, 48(8), 49(in Chinese).
肇研, 刘寒松. 材料工程, 2020, 48(8), 49.
3 Zhou B J, Zhang D J, Zhang Y J, et al. Aeronautical Manufacturing Technology, 2020, 63(7), 86(in Chinese).
周冰洁, 张代军, 张英杰, 等. 航空制造技术, 2020, 63(7), 86.
4 Luo Y F, Yao J N. Aeronautical Manufacturing Technology, 2021, 64(16), 93 (in Chinese).
罗云烽, 姚佳楠. 航空制造技术, 2021, 64(16), 93.
5 Zhou X D, Wang Q F, Zhai H. Fiber Composites, 2007(1), 3 (in Chinese).
周晓东, 王秋峰, 翟欢. 纤维复合材料, 2007(1), 3.
6 Chen G C, Yao J N, Zhang J D, et al. Journal of Aeronautical Materials, 2019, 39(5), 24 (in Chinese).
谌广昌, 姚佳楠, 张金栋, 等. 航空材料学报, 2019, 39(5), 24.
7 Hu J Q, Wang B, Zhang H Q, et al. Astronautical Systems Engineering Technology, 2020, 4(4), 61 (in Chinese).
胡记强, 王兵, 张涵其, 等. 宇航总体技术, 2020, 4(4), 61.
8 Guo Y Z. Fiber Composites, 2016, 33(3), 20 (in Chinese).
郭云竹. 纤维复合材料, 2016, 33(3), 20.
9 Su J X, Bian W X, Lu P C. China Plastics Industry, 2022, 50(7), 17 (in Chinese).
苏景新, 卞文熙, 路鹏程. 塑料工业, 2022, 50(7), 17.
10 Zhou L, Qin Z W, Liu S, et al. Materials Reports, 2019, 33(19), 3177 (in Chinese).
周利, 秦志伟, 刘杉, 等. 材料导报, 2019, 33(19), 3177.
11 Krassmann D, Moritzer E. Welding in the World, DOI:10. 1007/S40194-021-01194-0.
12 Reis J P, de Moura M, Samborski S. Materials(Basel, Switzerland), 2020, 13(24), 5832.
13 Ageorges C, Ye L, Hou M. Composites Part A:Applied Science and Manufacturing, 2001, 32, 839.
14 Roderus M, Woitun D, Kroner E. Key Engineering Materials, 2019, 809, 329.
15 Bhudolia S K, Gohel G, Leong K F, et al. Materials, 2020, 13(6), 1284.
16 Guntram Wagner, Frank Balle, Dietmar Eifler. JOM:the Journal of the Minerals, Metals& Materials Society, 2012, 64(3), 401.
17 Villegas I F. Journal of Thermoplastic Composite Materials, 2015, 28(1), 66.
18 Mathijsen D. Reinforced Plastics, 2016, 60(6), 405.
19 Palardy G, Villegas I F. In:Conference Record of the 31st Technical Conference(ASC). Williamsburg, 2016.
20 Patten D R. Machine Design, 2005, 77(3), 59.
21 Tao Y L. Plastics Manufacture, 2011(12), 75(in Chinese).
陶永亮. 塑料制造, 2011(12), 75.
22 Takamura M, Uehara K, Koyanagi J, et al. Journal of Multiscale Modelling, DOI:10. 1142/S1756973721430034.
23 Yang T F, Zhu Y W, Zhao Q Q. Engineering Plastics Applications, 2019, 47(2), 52(in Chinese).
杨庭飞, 朱永伟, 赵青青. 工程塑料应用, 2019, 47(2), 52.
24 Zhang S Y. China Rubber/Plastics Technology and Equipment, 2015, 41(8), 7(in Chinese).
张胜玉. 橡塑技术与装备, 2015, 41(8), 7.
25 Zhang S Y. China Rubber/Plastics Technology and Equipment, 2015, 41(10), 7(in Chinese).
张胜玉. 橡塑技术与装备, 2015, 41(10), 7.
26 Zhao T, Zhao Q Y, Wu W W, et al. Composites Part B:Engineering, 2021, 211, 108648.
27 Gao Y H. Ultrasonic welding of short carbon fiber reinforced Nylon66 composite. Master’s Thesis, Zhengzhou University, China, 2015 (in Chinese).
高宇昊. 碳纤维增强尼龙66复合材料的超声波焊接工艺研究. 硕士学位论文, 郑州大学, 2015.
28 Zhi Q. Ultrasonic welding of carbon fiber reinforced Nylon 66 composite without energy director. Ph. D. Thesis, Zhengzhou University, China, 2017 (in Chinese).
支倩. 无导能槽碳纤维增强尼龙66复合材料的超声波焊接. 博士学位论文, 郑州大学, 2017.
29 Rani M R, Prakasan K, Rudramoorthy R. International Journal of Design Engineering, 2014, 5(4), 344.
30 Nguyen T H, Quang Q T, Tran C L, et al. In:Proceedings of 5th Asia Conference on Mechanical and Materials Engineering (ACMME 2017). Tokyo, 2017.
31 Liang M J, Zhou G P, Wang J X. Journal of Shenzhen Polytechnic, 2003(4), 5(in Chinese).
梁明军, 周光平, 王家宣. 深圳职业技术学院学报, 2003(4), 5.
32 Lin S Y, Zhang F C. Acta Acustica, 1992(6), 451(in Chinese).
林书玉, 张福成. 声学学报, 1992(6), 451.
33 Lin S Y. Technical Acoustics, 1992(3), 37(in Chinese).
林书玉. 声学技术, 1992(3), 37.
34 Gao J, Lin S Y. Journal of Shaanxi Normal University(Natural Science Edition), 2009, 37(5), 42(in Chinese).
高健, 林书玉. 陕西师范大学学报(自然科学版), 2009, 37(5), 42.
35 Gao J, Chen X. Technical Acoustics, 2009, 28(6), 807(in Chinese).
高健, 晨曦. 声学技术, 2009, 28(6), 807.
36 Zhang N N. Basic Sciences Journal of Textile Universities, 2017, 30 (3), 390(in Chinese).
张宁宁. 纺织高校基础科学学报, 2017, 30(3), 390.
37 Zhou G P, Liang M J, Wang J X. Technical Acoustics, 2004(3), 183(in Chinese).
周光平, 梁明军, 王家宣. 声学技术, 2004(3), 183.
38 Zhao S J. Ship Electronic Engineering, 2021, 41(1), 162(in Chinese).
赵仕杰. 舰船电子工程, 2021, 41(1), 162.
39 Liang Z F, Zhou G P, Zhang Y H. Machinery Design & Manufacture, 2009(2), 235(in Chinese).
梁召峰, 周光平, 张亦慧. 机械设计与制造, 2009(2), 235.
40 Liang Z F, Zhou G P, Mo X P, et al. Journal of Engineering Design, 2009, 16(3), 200(in Chinese).
梁召峰, 周光平, 莫喜平, 等. 工程设计学报, 2009, 16(3), 200.
41 Du W, Huang Z M. Machinery Design & Manufacture, 2010(5), 246(in Chinese).
杜伟, 黄智明. 机械设计与制造, 2010(5), 246.
42 Tsujino J, Ueoka T, Maru K, et al. In:Proceedings of Symposium on Ultrasonic Electronics. Japan, pp.237.
43 Tsujino J, Ueoka T. Ultrasonics, 1996, 34(2), 229.
44 Azanova A, Galimzyanova R Y, Khisamiyeva L. Key Engineering Materials, 2020, 869, 56.
45 Zhang S Y. China Rubber/Plastics Technology and Equipment, 2020, 46(2), 41(in Chinese).
张胜玉. 橡塑技术与装备, 2020, 46(2), 41.
46 Zhao T, Broek C, Palardy G, et al. Composites Part A:Applied Science and Manufacturing, 2018, 109, 355.
47 Zhao T, Rans C, Villegas I F, et al. Composites Part A:Applied Science and Manufacturing, 2019, 120, 1.
48 Zhao Q Y, Wu H T, Chen X Y, et al. Composite Structures, DOI:10. 1016/j. compstruct. 2022. 115996.
49 Guo R F, Mei X C, Ye M, et al. Modern Manufacturing Technology and Equipment, 2019(12), 15(in Chinese).
郭如峰, 梅雪川, 叶敏, 等. 现代制造技术与装备, 2019(12), 15.
50 Wen Z L, Liu F H. Automobile Parts, 2011(12), 81(in Chinese).
温兆麟, 刘方湖. 汽车零部件, 2011(12), 81.
51 Tian T P. Research on welding path planning of automobile door panel based on improved particle swarm optimization. Master’s Thesis, South China University of Technology, China, 2020(in Chinese).
田天鹏. 基于改进粒子群算法的汽车门板焊接路径规划研究. 硕士学位论文, 华南理工大学, 2020.
52 Pei Z Z. The research on welding components and solder jointrecognition algorithm of automobile door panel. Master’s Thesis, South China University of Technology, China, 2019(in Chinese).
裴泽中. 汽车门板焊接部件和焊点识别算法研究. 硕士学位论文, 华南理工大学, 2019.
53 Cheng X H. Welding path planning of automotive trim based onimproved fruit fly optimization algorithm. Master’s Thesis, South China University of Technology, China, 2019(in Chinese).
程小洪. 基于改进果蝇优化算法的汽车饰件焊接路径规划. 硕士学位论文, 华南理工大学, 2019.
54 Liu F H. New Technology & New Process, 2010(8), 77(in Chinese).
刘方湖. 新技术新工艺, 2010 (8), 77.
55 Senders F, van Beurden M, Palardy G, et al. Advanced Manufacturing:Polymer & Composites Science, 2016, 2(3-4), 83.
56 Jongbloed B, Teuwen J, Benedictus R, et al. Composites Part B:Engineering, DOI:https:∥doi. org/10. 1016/j. compositesb. 2020. 108466.
57 Jongbloed B, Villegas I F, Benedictus R, et al. In:Proceedings of 22nd International Conference on Composite Materials (ICCM). Melbourne, 2019.
58 Takeda S I, Tanks J D, Sugimoto S, et al. Advanced Composite Materials, 2021, 30(2), 192.
59 Jongbloed B, Teuwen J, Palardy G, et al. Journal of Composite Materials, 2020, 54(15), 2023.
60 Jongbloed B, Vinod R, Teuwen J, et al. Composites Part A:Applied Science and Manufacturing, DOI:10. 1016/J. COMPOSITESA. 2022. 106808.
61 Jongbloed B, Teuwen J, Benedictus R, et al. Materials, 2022, 14(21), 6620.
62 Engelschall M, Larsen L, Fischer J C, et al. In:Conference Record of the SAMPE Europe Conference 2019. Nantes, 2019.
63 Larsen L, Görick D, Engelschall M, et al. In:Conference Record of the ITHEC 2020-5th International Conference and Exhibition on Thermoplastic Composites. Bremen, 2020.
64 Köhler F, Jongbloed B, Filipe M M, et al. In:Conference Record of the ITHEC 2018-4th International Conference and Exhibition on Thermoplastic Composites. Bremen, 2018.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed