Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 22120014-9    https://doi.org/10.11896/cldb.22120014
  无机非金属及其复合材料 |
太赫兹行波管用金刚石输能窗研究进展
张鹏伟1,2, 宋惠2,*, 白慧萍1,*, 易剑2, 江南2, 西村一仁2
1 云南大学材料与能源学院,昆明 650091
2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
Research Progress of Diamond Energy Transmission Window for Terahertz Traveling Wave Tube
ZHANG Pengwei1,2, SONG Hui2,*, BAI Huiping1,*, YI Jian2, JIANG Nan2, KAZUHITO Nishimura2
1 School of Materials and Energy, Yunnan University, Kunming 650091, China
2 Ningbo Institute of Materials Technology & Engineering, China Academy of Sciences, Ningbo 315201, Zhejiang, China
下载:  全 文 ( PDF ) ( 10880KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太赫兹波处于电磁波谱中电子学与光子学之间的空隙区域,具有不同于低频微波和高频光学的独特属性,在无线通信、生物医学、公共安全等军事和民用领域具有广阔的应用前景。太赫兹技术重点是对太赫兹波的产生和传输进行研究,当前所面临问题是在不产生额外传输损耗下保证高效率传输太赫兹信号。太赫兹行波管输能窗是典型的结构与功能一体化器件,主要起着行波管内外信号传递的作用,同时要保证器件内部的真空度以及对太赫兹波表现出高度“透明”。本文通过对近年来的文献进行总结整理,综述了国内外太赫兹行波管的应用和研究进展,揭示了未来发展大功率、高效率和宽频带传输是实现太赫兹真空器件实际应用的重点,这将对输能窗材料本身以及超精密加工提出了巨大挑战。纵观近几年国内外输能窗材料的发展历程,笔者们认为,与传统输能窗材料相比,单晶金刚石强度高,导热好,微波损耗小,没有晶界,气密性好,是最理想的太赫兹行波管输能窗口材料,也是目前研究发展的主流趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏伟
宋惠
白慧萍
易剑
江南
西村一仁
关键词:  太赫兹  输能窗  金刚石  介电性能    
Abstract: Terahertz (THz) wave that is located in the gap between electronics and photonics in the electromagnetic spectrum has unique properties different from low-frequency microwave and high-frequency optics, which has broad application prospects in military and civil fields such as wireless communication, biomedicine and public security. THz technology is a technique in which the generation and transmission of THz waves is emphasized. However, a dilemma of THz technology is to ensure the efficient transmission of terahertz signals without generating additional transmission losses. The energy transmission window is one of the kernel components of THz traveling wave tube (TWT). The energy transmission window is a typical device with integrated structure and function, which mainly plays the role of signal transmission inside and outside the traveling wave tube. Meanwhile, the energy transmission window is required to ensure the vacuum degree inside the device and show a high degree of ‘transparency’ to terahertz waves. In this paper, the application and research progress of THz TWT are reviewed by summarizing the literature in recent years. It can be revealed that the development of high power, high efficiency and wide band transmission is the focus of practical application of THz vacuum devices in the future, which will pose great challenges to the energy transmission window materials itself and ultra-precision machining. Throughout the development situation of energy transmission window materials in recent years, we can make a reasonable speculation that single crystal diamond is the most ideal energy transmission window material for THz traveling wave tubes, as single crystal diamond has the advantages of high strength, good thermal conductivity, low microwave loss, no grain boundary and good air tightness as compared with the traditional energy transmission window materials. Therefore, the application of high performance single crystal diamond materials should be the mainstream trend of research and development of transmission window materials in THz traveling wave tubes.
Key words:  terahertz    energy transmission window    diamond    dielectric property
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TN104.9  
基金资助: 中国科学院青年培育基金(JCPYJJ-22030)
通讯作者:  *宋惠,中国科学院宁波材料技术与工程研究所副研究员,宁波市领军与拔尖人才。2016年毕业于中国科学院大学,获得博士学位,随后在中国兵器工业集团科学研究院从事博士后研究,2018年至今以副研究员入职中国科学院宁波材料技术与工程研究所,长期从事金刚石超硬材料制备与高新应用方面的研究工作。作为项目负责人承担了国家自然科学基金、中国科学院重点部署青年项目、国家博士后科学基金、兵器联合基金、宁波市重大攻关等8项项目,作为项目骨干参加了装备预言基金、国防基础科研计划等4项项目。在高品质单晶金刚石制备、金刚石表面金属化等方面积累了丰富的经验。以第一作者身份发表SCI论文30余篇,授权发明专利6项。荣获2021年气动密封行业一等奖、2018兵器工业集团QC成果一等奖。入选2021年中国机械工程学会青年分会委员。songhui@nimte.ac.cn
白慧萍,云南大学材料与能源学院副教授、硕士研究生导师。2015年7月本科毕业于山西忻州师范学院化学系,2008年7月在云南师范大学化学化工学院取得硕士学位,2015年6月于云南大学化学科学与工程学院取得博士学位。2015年7月至今,在云南大学材料与能源学院任职,入选云南省“兴滇人才”计划、云南大学东陆中青年骨干教师培养计划。主要从事分子印迹材料的制备及应用与电化学传感器在环境、药品、毒品检测中的应用研究。发表SCI收录论文30余篇,包括Biosensors and Bioelectronics、Analytica Chimica Acta、Chinese Chemical Letter、Sensors and Actuators、Electrochimica Acta、Journal of Electroanalytical Chemistry等国内外知名期刊。baihuiping@ynu.edu.cn   
作者简介:  张鹏伟,2017年9月于河南工业大学获得工学学士学位。现为云南大学材料与能源学院和中国科学院宁波材料技术与工程研究所联合培养硕士研究生,在中国科学院宁波材料技术与工程研究所宋惠副研究员和云南大学白慧萍副教授的指导下进行研究。目前主要研究领域为金刚石太赫兹输能窗材料。
引用本文:    
张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
ZHANG Pengwei, SONG Hui, BAI Huiping, YI Jian, JIANG Nan, KAZUHITO Nishimura. Research Progress of Diamond Energy Transmission Window for Terahertz Traveling Wave Tube. Materials Reports, 2024, 38(16): 22120014-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120014  或          http://www.mater-rep.com/CN/Y2024/V38/I16/22120014
1 Fleming J W. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(12), 1023.
2 Chaccour C, Soorki M N, Saad W, et al. IEEE Communications Surveys and Tutorials, 2022, 24(2), 967.
3 Zhao G Z, Shen Y C, Liu Y. Journal of Electronic Measurement and Instrument, 2015, 29(8), 1097 (in Chinese).
赵国忠, 申彦春, 刘影. 电子测量与仪器学报, 2015, 29(8), 1097.
4 Rakić A D, Agnew G, Qi X Q, et al. In:2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). Sydney, NSW, Australia, 2016, pp.203.
5 Chattopadhyay G. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1), 33.
6 Hafez H A, Chai X, Ibrahim A, et al. Journal of Optics, 2016, 18(9), 093004.
7 Gu Z, Chen Y, Li H Y, et al. Infrared Technology, 2011, 33(5), 252 (in Chinese).
谷智, 陈沅, 李焕勇, 等. 红外技术, 2011, 33(5), 252.
8 Brantov A V, Kuratov A C, Lobok M G, et al. In:International Confe-rence on Laser Optics. St. Petersburg(RU), 2018, pp.235.
9 Payne J M, Shillue W P. In:International Topical Meeting on Microwave Photonics. Awaji, Japan, 2003, pp.9.
10 Cao J C, Chen Z, Zhou T, et al. In:2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong, NSW, Australia, 2012, pp.1.
11 Booske J H. Physics of Plasmas, 2008, 15(5), 055502.
12 Xu J. Research on nondestructive testing technology of composite materials based on terahertz time domain spectroscopy. Master’s Thesis, Hunan University, China, 2021 (in Chinese).
许健. 基于太赫兹时域光谱的复合材料无损检测技术研究. 硕士学位论文, 湖南大学, 2021.
13 Zhang Y P, Tang L B, Liu Y F, et al. Journal of Infrared and Millimeter Waves, 2020, 39(2), 191 (in Chinese).
张玉平, 唐利斌, 刘玉菲, 等. 红外与毫米波学报, 2020, 39(2), 191.
14 An G Y. Environmental Technology, 2018, 36(2), 25 (in Chinese).
安国雨. 环境技术, 2018, 36(2), 25.
15 Zhou Q G, Huang Z M. Infrared Technology, 2022, 44(4), 328 (in Chinese).
周强国, 黄志明. 红外技术, 2022, 44(4), 328.
16 Zhang Z. Laser and Infrared, 2012, 42(3), 250 (in Chinese).
张章. 激光与红外, 2012, 42(3), 250.
17 Zhang B H, Guo K. Aero Weaponry, 2022, 29(5), 7(in Chinese).
张博淮, 郭凯. 航空兵器, 2022, 29(5), 7.
18 Rappaport T S, Xing Y C, Kanhere O, et al. IEEE Access, 2019, 7, 78729.
19 Min B B, Zeng C E, Yin X, et al. Information and Electronic Engineering, 2014, 12(3), 351 (in Chinese).
闵碧波, 曾嫦娥, 印欣, 等. 太赫兹科学与电子信息学报, 2014, 12(3), 351.
20 Karpowicz N, Zhong H, Zhang C L, et al. Applied Physics Letters, 2005, 86(5), 054105.
21 Yan F. In:Intelligent Control & Automation. Beijing, China, 2012, pp.1570.
22 Federici J F, Schulkin B, Huang F, et al. Semiconductor Science and Technology, 2005, 20(7), 266.
23 Sun J H, Yu Z H, Song H F, et al. In:the 19th Annual Meeting of China Aviation TT&C Technology. Shaanxi Xi’an, China, 2022, pp.296.
24 Han Y, Zhou Y, Abu L T, et al. Modern Scientific Instruments, 2006(2), 45 (in Chinese).
韩元, 周燕, 阿布来提, 等. 现代科学仪器, 2006(2), 45.
25 Xu D G, Wang Y Y, Hu C H, et al. Chinese Journal of Lasers, 2021, 48(19), 137 (in Chinese).
徐德刚, 王与烨, 胡常灏, 等. 中国激光, 2021, 48(19), 137.
26 Zhao H L, Wang Y Y, Chen L Y, et al. Journal of Biomedical Optics, 2018, 23(3), 036015.
27 Yan Z Y, Zhu L G, Meng K, et al. Trends Biotechnol, 2022, 40(7), 816.
28 Yang G K, Yuan B, Xie D Y, et al. Laser and Infrared, 2011, 41(4), 376 (in Chinese).
杨光鲲, 袁斌, 谢东彦, 等. 激光与红外, 2011, 41(4), 376.
29 Wang G Y, Shao S Y, Huang H Y, et al. In:46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Chengdu, China, 2021, pp.1.
30 Wang M H, Xue Q Z, Liu P K. Journal of Electronics & Information Technology, 2008, 30(7), 1766 (in Chinese).
王明红, 薛谦忠, 刘濮鲲. 电子与信息学报, 2008, 30(7), 1766.
31 Chang S J, Wu Z H, Huang J, et al. Journal of Infrared and Millimeter Waves, 2022, 41(1), 85 (in Chinese).
常少杰, 吴振华, 黄杰, 等. 红外与毫米波学报, 2022, 41(1), 85.
32 Booske J H. Physics of Plasmas, 2008, 15(5), 055502.
33 Dhillon S S, Vitiello M S, Linfield E H, et al. Journal of Physics D:Applied Physics, 2017, 50(4), 043001.
34 Hu Y J. Study on energy transmission system of terahertz vacuum devices. Master’s Thesis, University of Electronic Science and Technology of China, China, 2021 (in Chinese).
胡益珺. 太赫兹真空器件输能系统研究. 硕士学位论文, 电子科技大学, 2021.
35 Xu P, Yang J, Qiu T. Bulletin of the Chinese Ceramic Society, 2007, 26(6), 1160 (in Chinese).
徐鹏, 杨建, 丘泰. 硅酸盐通报, 2007, 26(6), 1160.
36 Du Y H, Hu Y F, Ding M Q, et al. Information and Electronic Engineering, 2013, 11(3), 350 (in Chinese).
杜英华, 胡银富, 丁明清, 等. 太赫兹科学与电子信息学报, 2013, 11(3), 350.
37 Huang J Q. Study on broadband RF window in terahertz band. Master’s Thesis, University of Electronic Science and Technology of China, China, 2020 (in Chinese).
黄佳琦. 太赫兹频段宽带输能窗研究. 硕士学位论文, 电子科技大学, 2020.
38 Wang W H, Dai B, Wang Y, et al. Materials Science and Technology, 2020, 28(3), 42 (in Chinese).
王伟华, 代兵, 王杨, 等. 材料科学与工艺, 2020, 28(3), 42.
39 Huangfu Y J. Shipboard Electronic Countermeasure, 2021, 44(6), 111 (in Chinese).
皇甫一江. 舰船电子对抗, 2021, 44(6), 111.
40 Xue L Y, Liu L, Zhang P W, et al. Electronic Components and Materials, 2019, 38(1), 83 (in Chinese).
薛辽豫, 刘林, 张平伟, 等. 电子元件与材料, 2019, 38(1), 83.
41 Zhang X, Dong G X, Li Y Y, et al. China Ceramic Industry, 2014, 21(5), 16 (in Chinese).
张茜, 董桂霞, 李媛媛, 等. 中国陶瓷工业, 2014, 21(5), 16.
42 Nayek N, Subhadra K, Kandpal M, et al. In:International Conference on Recent Advances in Microwave Theory & Applications. Jaipur, India, 2009, pp.598.
43 Xu W J, Xiong N, Guo S D, et al. Vacuum Electronics, 2020(6), 41 (in Chinese).
徐望炬, 熊能, 郭思豆, 等. 真空电子技术, 2020(6), 41.
44 Bai N F, Shen J X, Fan H H, et al. IEEE Electron Device Lett, 2021, 42(8), 1228.
45 Shen J X, Bai N F, Shen C S, et al. In:2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). Monterey, CA, USA, 2021, pp.145.
46 Cook A M, Joye C D, Kimura T, et al. IEEE Transactions on Electron Devices, 2013, 60(3), 1257.
47 Gao L Q. Vacuum Electronics, 1999(2), 27 (in Chinese).
高陇桥. 真空电子技术, 1999(2), 27.
48 Li W F, Huang X Z, Yang B C, et al. Light Metal, 2010(2), 20 (in Chinese).
李文芳, 黄小忠, 杨兵初, 等. 轻金属, 2010(2), 20.
49 Ding M Q, Li L L, Feng J J. In:2014 IEEE International Vacuum Electronics Conference (IVEC). Monterey, CA, USA, 2014, pp.461.
50 Ding M Q, Li L L, Du Y H, et al. In:2015 IEEE International Vacuum Electronics Conference (IVEC). Beijing, China, 2015, pp.1.
51 Ding M Q, Li L L, Du Y H, et al. In:2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool, UK, 2017, pp.1.
52 Ding M Q, Li L L, Du Y H, et al. In:2018 IEEE International Vacuum Electronics Conference (IVEC). Monterey, CA, USA, 2018, pp.349.
53 Ding M Q, Li L L, Hua C Y, et al. In:2019 International Vacuum Electronics Conference (IVEC). Busan, Korea (South), 2019, pp.1.
54 Gao L Q. Vacuum Electronics, 2006(4), 4 (in Chinese).
高陇桥. 真空电子技术, 2006(4), 4.
55 Bai Z X, Yang X Z, Chen H, et al. Infrared and Laser Engineering, 2020, 49(12), 9 (in Chinese).
白振旭, 杨学宗, 陈晖, 等. 红外与激光工程, 2020, 49(12), 9.
56 Ji S H. Journal of Applied Optics, 1996, 17(2), 8 (in Chinese).
纪世华. 应用光学, 1996, 17(2), 8.
57 Feng J J, Cai J, Hu Y F, et al. Information and Electronic Engineering, 2015, 13(5), 684 (in Chinese).
冯进军, 蔡军, 胡银富, 等. 太赫兹科学与电子信息学报, 2015, 13(5), 684.
58 Ding M Q, Li L L, Feng J J. Applied Surface Science, 2012, 258(16), 5987.
59 Yan C S, Vohra Y K, Mao H K, et al. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20), 12523.
60 Meng Y F, Yan C S, Krasnicki S, et al. Physica Status Solidi A-Applied Research, 2012, 209(1), 101.
61 Li Y C, Liu X D, Shu G Y, et al. Diamond and Related Materials, 2020, 101, 107574.
62 Hu W X, Chen K, Tao T, et al. Thin Solid Films, 2022, 763, 139571.
63 Zheng Y T, Zhang R, Chen X D, et al. ACS Applied Electronic Materials, 2020, 2(5), 1459.
64 Parshin V V, Myasnikova S E, Derkach V N, et al. In:Joint International Conference on Infrared & Millimeter Waves & International Conference on Terahertz Electronics. Williamsburg, VA, USA, 2006, pp.22.
65 Scheuring A, Probst P, Stockhausen A, et al. In:35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome, Italy, 2010, pp.1.
66 Zhang Z Q, Song Y T, Gou L. AIP Advances, 2019, 9(9), 095048.
67 Yamada H, Meier A, Mazzocchi F, et al. Diamond and Related Materials, 2015, 58, 1.
68 Polyakov V I, Rukovishnikov A I, Garin B M, et al. Diamond and Related Materials, 2005, 14(3-7), 604.
69 Liu Y, Ding M Q, Su J, et al. Diamond and Related Materials, 2017, 76, 68.
70 Scherer T A, Strauss D, Meier A, et al. Mrs Proceedings, 2011, 1282, 177.
71 Zheng Y T, Ye H T, Thornton R, et al. Diamond and Related Materials, 2020, 101, 107600.
72 Taraskin S N, Simdyankin S I, Elliott S R, et al. Physical Review Letters, 2006, 97(5), 055504.
73 Brandon J R, Coe S E, Sussmann R S, et al. Fusion Engineering & Design, 2001, 53(1-4), 553.
74 Tucek J C, Basten M A, Gallagher D A, et al. In:IEEE International Vacuum Electronics Conference. Monterey, CA, USA, 2012, pp.31.
75 Tucek J C, Basten M A, Gallagher D A, et al. In:IEEE International Vacuum Electronics Conference. Monterey, CA, USA, 2014, pp.153.
76 Pasagadagula M, Chandel A, Sirigiri J R, et al. In:IEEE 21st International Conference on Vacuum Electronics (IVEC). Monterey, CA, USA, 2021, pp.151.
77 Kimura T, Atkinson J, Forrest S, et al. In:IEEE International Vacuum Electronics Conference. Monterey, CA, USA, 2012, pp.195.
78 Yang Z X. A research of 0. 85 THz all-mental slow-wave structure traveling wave tube. Master’s Thesis, University of Electronic Science and Technology of China, China, 2021 (in Chinese).
杨臻鑫. 全金属850 GHz行波管研究. 硕士学位论文, 电子科技大学, 2021.
79 Su S M, Zhang C Q, Li Y, et al. In:22nd International Vacuum Electronics Conference (IVEC). Rotterdam, Netherlands, 2022, pp.1.
80 Jiang Y, Lei W Q, Hu P, et al. In:14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT). Lancaster, United Kingdom, 2021, pp.1.
81 Ding M Q, Li L L, Bai G D, et al. In:Vacuum Electronics Conference. Bangalore, India, 2011, pp.387.
82 Liu J K, Ding M Q, Li L L, et al. In:the Second National Symposium on Terahertz Science, Technology and Application. Shanghai, China, 2014, pp.156.
83 Li L L, Ding M Q, Cai J, et al. In:Vacuum Electronics Conference. Beijing, China, 2015, pp.1.
84 Li L L, Ding M Q, Pan P, et al. In:22nd International Vacuum Electronics Conference (IVEC). Rotterdam, Netherlands, 2022, pp.1.
[1] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[2] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[3] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[4] 呼丹明, 段锋, 丁冬海, 李杰, 尹育航, 彭凯. 不烧滑板磨削加工用Fe-Ni-Cu-Sn金属基金刚石工具的制备与性能[J]. 材料导报, 2024, 38(10): 22100199-7.
[5] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[6] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[7] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[8] 邓康宁, 肖清泉, 陈豪, 王傲霜, 王江翔. 日盲紫外硅/金刚石异质结光电二极管的结构设计和仿真[J]. 材料导报, 2023, 37(20): 22030226-6.
[9] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[10] 陈善登, 白清顺, 窦昱昊, 郭万民, 郭永博, 杜云龙. 金刚石表面生长石墨烯的纳观尺度机理研究进展[J]. 材料导报, 2023, 37(16): 21110098-7.
[11] 董浩永, 任瑛, 张贵锋. MPCVD同质外延单晶金刚石研究进展[J]. 材料导报, 2023, 37(16): 21100019-8.
[12] 杨温鑫, 孟晓燕, 邓欣. 粉体粒径对数字光处理3D打印金刚石复合材料性能的影响[J]. 材料导报, 2023, 37(12): 21120211-6.
[13] 李文生, 黄晓龙, 成波, 李建军, 宋强, 赛纽特·乌拉吉米尔. 硅低温热解活化包覆超细金刚石及其抗氧化和分散稳定性[J]. 材料导报, 2023, 37(11): 21120094-6.
[14] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[15] 朱万利, 包建勋, 张舸, 崔聪聪. 金刚石/碳化硅复合材料的研究进展[J]. 材料导报, 2023, 37(10): 22100263-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed