Research Progress of Diamond Energy Transmission Window for Terahertz Traveling Wave Tube
ZHANG Pengwei1,2, SONG Hui2,*, BAI Huiping1,*, YI Jian2, JIANG Nan2, KAZUHITO Nishimura2
1 School of Materials and Energy, Yunnan University, Kunming 650091, China 2 Ningbo Institute of Materials Technology & Engineering, China Academy of Sciences, Ningbo 315201, Zhejiang, China
Abstract: Terahertz (THz) wave that is located in the gap between electronics and photonics in the electromagnetic spectrum has unique properties different from low-frequency microwave and high-frequency optics, which has broad application prospects in military and civil fields such as wireless communication, biomedicine and public security. THz technology is a technique in which the generation and transmission of THz waves is emphasized. However, a dilemma of THz technology is to ensure the efficient transmission of terahertz signals without generating additional transmission losses. The energy transmission window is one of the kernel components of THz traveling wave tube (TWT). The energy transmission window is a typical device with integrated structure and function, which mainly plays the role of signal transmission inside and outside the traveling wave tube. Meanwhile, the energy transmission window is required to ensure the vacuum degree inside the device and show a high degree of ‘transparency’ to terahertz waves. In this paper, the application and research progress of THz TWT are reviewed by summarizing the literature in recent years. It can be revealed that the development of high power, high efficiency and wide band transmission is the focus of practical application of THz vacuum devices in the future, which will pose great challenges to the energy transmission window materials itself and ultra-precision machining. Throughout the development situation of energy transmission window materials in recent years, we can make a reasonable speculation that single crystal diamond is the most ideal energy transmission window material for THz traveling wave tubes, as single crystal diamond has the advantages of high strength, good thermal conductivity, low microwave loss, no grain boundary and good air tightness as compared with the traditional energy transmission window materials. Therefore, the application of high performance single crystal diamond materials should be the mainstream trend of research and development of transmission window materials in THz traveling wave tubes.
通讯作者:
*宋惠,中国科学院宁波材料技术与工程研究所副研究员,宁波市领军与拔尖人才。2016年毕业于中国科学院大学,获得博士学位,随后在中国兵器工业集团科学研究院从事博士后研究,2018年至今以副研究员入职中国科学院宁波材料技术与工程研究所,长期从事金刚石超硬材料制备与高新应用方面的研究工作。作为项目负责人承担了国家自然科学基金、中国科学院重点部署青年项目、国家博士后科学基金、兵器联合基金、宁波市重大攻关等8项项目,作为项目骨干参加了装备预言基金、国防基础科研计划等4项项目。在高品质单晶金刚石制备、金刚石表面金属化等方面积累了丰富的经验。以第一作者身份发表SCI论文30余篇,授权发明专利6项。荣获2021年气动密封行业一等奖、2018兵器工业集团QC成果一等奖。入选2021年中国机械工程学会青年分会委员。songhui@nimte.ac.cn 白慧萍,云南大学材料与能源学院副教授、硕士研究生导师。2015年7月本科毕业于山西忻州师范学院化学系,2008年7月在云南师范大学化学化工学院取得硕士学位,2015年6月于云南大学化学科学与工程学院取得博士学位。2015年7月至今,在云南大学材料与能源学院任职,入选云南省“兴滇人才”计划、云南大学东陆中青年骨干教师培养计划。主要从事分子印迹材料的制备及应用与电化学传感器在环境、药品、毒品检测中的应用研究。发表SCI收录论文30余篇,包括Biosensors and Bioelectronics、Analytica Chimica Acta、Chinese Chemical Letter、Sensors and Actuators、Electrochimica Acta、Journal of Electroanalytical Chemistry等国内外知名期刊。baihuiping@ynu.edu.cn
1 Fleming J W. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(12), 1023. 2 Chaccour C, Soorki M N, Saad W, et al. IEEE Communications Surveys and Tutorials, 2022, 24(2), 967. 3 Zhao G Z, Shen Y C, Liu Y. Journal of Electronic Measurement and Instrument, 2015, 29(8), 1097 (in Chinese). 赵国忠, 申彦春, 刘影. 电子测量与仪器学报, 2015, 29(8), 1097. 4 Rakić A D, Agnew G, Qi X Q, et al. In:2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). Sydney, NSW, Australia, 2016, pp.203. 5 Chattopadhyay G. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1), 33. 6 Hafez H A, Chai X, Ibrahim A, et al. Journal of Optics, 2016, 18(9), 093004. 7 Gu Z, Chen Y, Li H Y, et al. Infrared Technology, 2011, 33(5), 252 (in Chinese). 谷智, 陈沅, 李焕勇, 等. 红外技术, 2011, 33(5), 252. 8 Brantov A V, Kuratov A C, Lobok M G, et al. In:International Confe-rence on Laser Optics. St. Petersburg(RU), 2018, pp.235. 9 Payne J M, Shillue W P. In:International Topical Meeting on Microwave Photonics. Awaji, Japan, 2003, pp.9. 10 Cao J C, Chen Z, Zhou T, et al. In:2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves. Wollongong, NSW, Australia, 2012, pp.1. 11 Booske J H. Physics of Plasmas, 2008, 15(5), 055502. 12 Xu J. Research on nondestructive testing technology of composite materials based on terahertz time domain spectroscopy. Master’s Thesis, Hunan University, China, 2021 (in Chinese). 许健. 基于太赫兹时域光谱的复合材料无损检测技术研究. 硕士学位论文, 湖南大学, 2021. 13 Zhang Y P, Tang L B, Liu Y F, et al. Journal of Infrared and Millimeter Waves, 2020, 39(2), 191 (in Chinese). 张玉平, 唐利斌, 刘玉菲, 等. 红外与毫米波学报, 2020, 39(2), 191. 14 An G Y. Environmental Technology, 2018, 36(2), 25 (in Chinese). 安国雨. 环境技术, 2018, 36(2), 25. 15 Zhou Q G, Huang Z M. Infrared Technology, 2022, 44(4), 328 (in Chinese). 周强国, 黄志明. 红外技术, 2022, 44(4), 328. 16 Zhang Z. Laser and Infrared, 2012, 42(3), 250 (in Chinese). 张章. 激光与红外, 2012, 42(3), 250. 17 Zhang B H, Guo K. Aero Weaponry, 2022, 29(5), 7(in Chinese). 张博淮, 郭凯. 航空兵器, 2022, 29(5), 7. 18 Rappaport T S, Xing Y C, Kanhere O, et al. IEEE Access, 2019, 7, 78729. 19 Min B B, Zeng C E, Yin X, et al. Information and Electronic Engineering, 2014, 12(3), 351 (in Chinese). 闵碧波, 曾嫦娥, 印欣, 等. 太赫兹科学与电子信息学报, 2014, 12(3), 351. 20 Karpowicz N, Zhong H, Zhang C L, et al. Applied Physics Letters, 2005, 86(5), 054105. 21 Yan F. In:Intelligent Control & Automation. Beijing, China, 2012, pp.1570. 22 Federici J F, Schulkin B, Huang F, et al. Semiconductor Science and Technology, 2005, 20(7), 266. 23 Sun J H, Yu Z H, Song H F, et al. In:the 19th Annual Meeting of China Aviation TT&C Technology. Shaanxi Xi’an, China, 2022, pp.296. 24 Han Y, Zhou Y, Abu L T, et al. Modern Scientific Instruments, 2006(2), 45 (in Chinese). 韩元, 周燕, 阿布来提, 等. 现代科学仪器, 2006(2), 45. 25 Xu D G, Wang Y Y, Hu C H, et al. Chinese Journal of Lasers, 2021, 48(19), 137 (in Chinese). 徐德刚, 王与烨, 胡常灏, 等. 中国激光, 2021, 48(19), 137. 26 Zhao H L, Wang Y Y, Chen L Y, et al. Journal of Biomedical Optics, 2018, 23(3), 036015. 27 Yan Z Y, Zhu L G, Meng K, et al. Trends Biotechnol, 2022, 40(7), 816. 28 Yang G K, Yuan B, Xie D Y, et al. Laser and Infrared, 2011, 41(4), 376 (in Chinese). 杨光鲲, 袁斌, 谢东彦, 等. 激光与红外, 2011, 41(4), 376. 29 Wang G Y, Shao S Y, Huang H Y, et al. In:46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). Chengdu, China, 2021, pp.1. 30 Wang M H, Xue Q Z, Liu P K. Journal of Electronics & Information Technology, 2008, 30(7), 1766 (in Chinese). 王明红, 薛谦忠, 刘濮鲲. 电子与信息学报, 2008, 30(7), 1766. 31 Chang S J, Wu Z H, Huang J, et al. Journal of Infrared and Millimeter Waves, 2022, 41(1), 85 (in Chinese). 常少杰, 吴振华, 黄杰, 等. 红外与毫米波学报, 2022, 41(1), 85. 32 Booske J H. Physics of Plasmas, 2008, 15(5), 055502. 33 Dhillon S S, Vitiello M S, Linfield E H, et al. Journal of Physics D:Applied Physics, 2017, 50(4), 043001. 34 Hu Y J. Study on energy transmission system of terahertz vacuum devices. Master’s Thesis, University of Electronic Science and Technology of China, China, 2021 (in Chinese). 胡益珺. 太赫兹真空器件输能系统研究. 硕士学位论文, 电子科技大学, 2021. 35 Xu P, Yang J, Qiu T. Bulletin of the Chinese Ceramic Society, 2007, 26(6), 1160 (in Chinese). 徐鹏, 杨建, 丘泰. 硅酸盐通报, 2007, 26(6), 1160. 36 Du Y H, Hu Y F, Ding M Q, et al. Information and Electronic Engineering, 2013, 11(3), 350 (in Chinese). 杜英华, 胡银富, 丁明清, 等. 太赫兹科学与电子信息学报, 2013, 11(3), 350. 37 Huang J Q. Study on broadband RF window in terahertz band. Master’s Thesis, University of Electronic Science and Technology of China, China, 2020 (in Chinese). 黄佳琦. 太赫兹频段宽带输能窗研究. 硕士学位论文, 电子科技大学, 2020. 38 Wang W H, Dai B, Wang Y, et al. Materials Science and Technology, 2020, 28(3), 42 (in Chinese). 王伟华, 代兵, 王杨, 等. 材料科学与工艺, 2020, 28(3), 42. 39 Huangfu Y J. Shipboard Electronic Countermeasure, 2021, 44(6), 111 (in Chinese). 皇甫一江. 舰船电子对抗, 2021, 44(6), 111. 40 Xue L Y, Liu L, Zhang P W, et al. Electronic Components and Materials, 2019, 38(1), 83 (in Chinese). 薛辽豫, 刘林, 张平伟, 等. 电子元件与材料, 2019, 38(1), 83. 41 Zhang X, Dong G X, Li Y Y, et al. China Ceramic Industry, 2014, 21(5), 16 (in Chinese). 张茜, 董桂霞, 李媛媛, 等. 中国陶瓷工业, 2014, 21(5), 16. 42 Nayek N, Subhadra K, Kandpal M, et al. In:International Conference on Recent Advances in Microwave Theory & Applications. Jaipur, India, 2009, pp.598. 43 Xu W J, Xiong N, Guo S D, et al. Vacuum Electronics, 2020(6), 41 (in Chinese). 徐望炬, 熊能, 郭思豆, 等. 真空电子技术, 2020(6), 41. 44 Bai N F, Shen J X, Fan H H, et al. IEEE Electron Device Lett, 2021, 42(8), 1228. 45 Shen J X, Bai N F, Shen C S, et al. In:2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). Monterey, CA, USA, 2021, pp.145. 46 Cook A M, Joye C D, Kimura T, et al. IEEE Transactions on Electron Devices, 2013, 60(3), 1257. 47 Gao L Q. Vacuum Electronics, 1999(2), 27 (in Chinese). 高陇桥. 真空电子技术, 1999(2), 27. 48 Li W F, Huang X Z, Yang B C, et al. Light Metal, 2010(2), 20 (in Chinese). 李文芳, 黄小忠, 杨兵初, 等. 轻金属, 2010(2), 20. 49 Ding M Q, Li L L, Feng J J. In:2014 IEEE International Vacuum Electronics Conference (IVEC). Monterey, CA, USA, 2014, pp.461. 50 Ding M Q, Li L L, Du Y H, et al. In:2015 IEEE International Vacuum Electronics Conference (IVEC). Beijing, China, 2015, pp.1. 51 Ding M Q, Li L L, Du Y H, et al. In:2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). Liverpool, UK, 2017, pp.1. 52 Ding M Q, Li L L, Du Y H, et al. In:2018 IEEE International Vacuum Electronics Conference (IVEC). Monterey, CA, USA, 2018, pp.349. 53 Ding M Q, Li L L, Hua C Y, et al. In:2019 International Vacuum Electronics Conference (IVEC). Busan, Korea (South), 2019, pp.1. 54 Gao L Q. Vacuum Electronics, 2006(4), 4 (in Chinese). 高陇桥. 真空电子技术, 2006(4), 4. 55 Bai Z X, Yang X Z, Chen H, et al. Infrared and Laser Engineering, 2020, 49(12), 9 (in Chinese). 白振旭, 杨学宗, 陈晖, 等. 红外与激光工程, 2020, 49(12), 9. 56 Ji S H. Journal of Applied Optics, 1996, 17(2), 8 (in Chinese). 纪世华. 应用光学, 1996, 17(2), 8. 57 Feng J J, Cai J, Hu Y F, et al. Information and Electronic Engineering, 2015, 13(5), 684 (in Chinese). 冯进军, 蔡军, 胡银富, 等. 太赫兹科学与电子信息学报, 2015, 13(5), 684. 58 Ding M Q, Li L L, Feng J J. Applied Surface Science, 2012, 258(16), 5987. 59 Yan C S, Vohra Y K, Mao H K, et al. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20), 12523. 60 Meng Y F, Yan C S, Krasnicki S, et al. Physica Status Solidi A-Applied Research, 2012, 209(1), 101. 61 Li Y C, Liu X D, Shu G Y, et al. Diamond and Related Materials, 2020, 101, 107574. 62 Hu W X, Chen K, Tao T, et al. Thin Solid Films, 2022, 763, 139571. 63 Zheng Y T, Zhang R, Chen X D, et al. ACS Applied Electronic Materials, 2020, 2(5), 1459. 64 Parshin V V, Myasnikova S E, Derkach V N, et al. In:Joint International Conference on Infrared & Millimeter Waves & International Conference on Terahertz Electronics. Williamsburg, VA, USA, 2006, pp.22. 65 Scheuring A, Probst P, Stockhausen A, et al. In:35th International Conference on Infrared, Millimeter, and Terahertz Waves. Rome, Italy, 2010, pp.1. 66 Zhang Z Q, Song Y T, Gou L. AIP Advances, 2019, 9(9), 095048. 67 Yamada H, Meier A, Mazzocchi F, et al. Diamond and Related Materials, 2015, 58, 1. 68 Polyakov V I, Rukovishnikov A I, Garin B M, et al. Diamond and Related Materials, 2005, 14(3-7), 604. 69 Liu Y, Ding M Q, Su J, et al. Diamond and Related Materials, 2017, 76, 68. 70 Scherer T A, Strauss D, Meier A, et al. Mrs Proceedings, 2011, 1282, 177. 71 Zheng Y T, Ye H T, Thornton R, et al. Diamond and Related Materials, 2020, 101, 107600. 72 Taraskin S N, Simdyankin S I, Elliott S R, et al. Physical Review Letters, 2006, 97(5), 055504. 73 Brandon J R, Coe S E, Sussmann R S, et al. Fusion Engineering & Design, 2001, 53(1-4), 553. 74 Tucek J C, Basten M A, Gallagher D A, et al. In:IEEE International Vacuum Electronics Conference. Monterey, CA, USA, 2012, pp.31. 75 Tucek J C, Basten M A, Gallagher D A, et al. In:IEEE International Vacuum Electronics Conference. Monterey, CA, USA, 2014, pp.153. 76 Pasagadagula M, Chandel A, Sirigiri J R, et al. In:IEEE 21st International Conference on Vacuum Electronics (IVEC). Monterey, CA, USA, 2021, pp.151. 77 Kimura T, Atkinson J, Forrest S, et al. In:IEEE International Vacuum Electronics Conference. Monterey, CA, USA, 2012, pp.195. 78 Yang Z X. A research of 0. 85 THz all-mental slow-wave structure traveling wave tube. Master’s Thesis, University of Electronic Science and Technology of China, China, 2021 (in Chinese). 杨臻鑫. 全金属850 GHz行波管研究. 硕士学位论文, 电子科技大学, 2021. 79 Su S M, Zhang C Q, Li Y, et al. In:22nd International Vacuum Electronics Conference (IVEC). Rotterdam, Netherlands, 2022, pp.1. 80 Jiang Y, Lei W Q, Hu P, et al. In:14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT). Lancaster, United Kingdom, 2021, pp.1. 81 Ding M Q, Li L L, Bai G D, et al. In:Vacuum Electronics Conference. Bangalore, India, 2011, pp.387. 82 Liu J K, Ding M Q, Li L L, et al. In:the Second National Symposium on Terahertz Science, Technology and Application. Shanghai, China, 2014, pp.156. 83 Li L L, Ding M Q, Cai J, et al. In:Vacuum Electronics Conference. Beijing, China, 2015, pp.1. 84 Li L L, Ding M Q, Pan P, et al. In:22nd International Vacuum Electronics Conference (IVEC). Rotterdam, Netherlands, 2022, pp.1.