Progress in Ultrasonic Welding of Thermoplastic Composites with Large Aspect Ratio Joints
YAO Fulin1,2,*, CHU Zenan1,2, JING Chong1,2, ZHAO Yue1,2, WEI Yuan1,2
1 Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China 2 School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
Abstract: Thermoplastic composites are widely used in automotive industry, aerospace, medical equipment and other fields due to their low density, superior mechanical properties, low processing cost and recyclability. Ultrasonic welding is a commonly used composite material connection technology. It not only has fast welding speed, high welding strength, but also has good sealing performance, clean and pollution-free. In production practice, ultrasonic welding is mainly based on single-point static welding, and the welding area is defective. However, thermoplastic composite structural parts often require larger-sized welded joints, and single-point static welding is difficult to meet production needs. On the basis of summarizing the existing ultrasonic welding lap forms and joint types, this paper puts forward the concept of large aspect ratio joint. The solutions of ultrasonic welding of large length-width ratio joints such as large size cross-section horn welding, multi-point ultrasonic welding and continuous ultrasonic welding are compared. The research progress of joints with large aspect ratio is summarized, and the problems to be solved and the development trend of ultrasonic welding in the future are prospected.
1 Liu B, An W L, Ni N N. Aeronautical Manufacturing Technology, 2021, 64(22), 80 (in Chinese). 刘彬, 安卫龙, 倪楠楠. 航空制造技术, 2021, 64(22), 80. 2 Zhao Y, Liu H S. Journal of Materials Engineering, 2020, 48(8), 49(in Chinese). 肇研, 刘寒松. 材料工程, 2020, 48(8), 49. 3 Zhou B J, Zhang D J, Zhang Y J, et al. Aeronautical Manufacturing Technology, 2020, 63(7), 86(in Chinese). 周冰洁, 张代军, 张英杰, 等. 航空制造技术, 2020, 63(7), 86. 4 Luo Y F, Yao J N. Aeronautical Manufacturing Technology, 2021, 64(16), 93 (in Chinese). 罗云烽, 姚佳楠. 航空制造技术, 2021, 64(16), 93. 5 Zhou X D, Wang Q F, Zhai H. Fiber Composites, 2007(1), 3 (in Chinese). 周晓东, 王秋峰, 翟欢. 纤维复合材料, 2007(1), 3. 6 Chen G C, Yao J N, Zhang J D, et al. Journal of Aeronautical Materials, 2019, 39(5), 24 (in Chinese). 谌广昌, 姚佳楠, 张金栋, 等. 航空材料学报, 2019, 39(5), 24. 7 Hu J Q, Wang B, Zhang H Q, et al. Astronautical Systems Engineering Technology, 2020, 4(4), 61 (in Chinese). 胡记强, 王兵, 张涵其, 等. 宇航总体技术, 2020, 4(4), 61. 8 Guo Y Z. Fiber Composites, 2016, 33(3), 20 (in Chinese). 郭云竹. 纤维复合材料, 2016, 33(3), 20. 9 Su J X, Bian W X, Lu P C. China Plastics Industry, 2022, 50(7), 17 (in Chinese). 苏景新, 卞文熙, 路鹏程. 塑料工业, 2022, 50(7), 17. 10 Zhou L, Qin Z W, Liu S, et al. Materials Reports, 2019, 33(19), 3177 (in Chinese). 周利, 秦志伟, 刘杉, 等. 材料导报, 2019, 33(19), 3177. 11 Krassmann D, Moritzer E. Welding in the World, DOI:10. 1007/S40194-021-01194-0. 12 Reis J P, de Moura M, Samborski S. Materials(Basel, Switzerland), 2020, 13(24), 5832. 13 Ageorges C, Ye L, Hou M. Composites Part A:Applied Science and Manufacturing, 2001, 32, 839. 14 Roderus M, Woitun D, Kroner E. Key Engineering Materials, 2019, 809, 329. 15 Bhudolia S K, Gohel G, Leong K F, et al. Materials, 2020, 13(6), 1284. 16 Guntram Wagner, Frank Balle, Dietmar Eifler. JOM:the Journal of the Minerals, Metals& Materials Society, 2012, 64(3), 401. 17 Villegas I F. Journal of Thermoplastic Composite Materials, 2015, 28(1), 66. 18 Mathijsen D. Reinforced Plastics, 2016, 60(6), 405. 19 Palardy G, Villegas I F. In:Conference Record of the 31st Technical Conference(ASC). Williamsburg, 2016. 20 Patten D R. Machine Design, 2005, 77(3), 59. 21 Tao Y L. Plastics Manufacture, 2011(12), 75(in Chinese). 陶永亮. 塑料制造, 2011(12), 75. 22 Takamura M, Uehara K, Koyanagi J, et al. Journal of Multiscale Modelling, DOI:10. 1142/S1756973721430034. 23 Yang T F, Zhu Y W, Zhao Q Q. Engineering Plastics Applications, 2019, 47(2), 52(in Chinese). 杨庭飞, 朱永伟, 赵青青. 工程塑料应用, 2019, 47(2), 52. 24 Zhang S Y. China Rubber/Plastics Technology and Equipment, 2015, 41(8), 7(in Chinese). 张胜玉. 橡塑技术与装备, 2015, 41(8), 7. 25 Zhang S Y. China Rubber/Plastics Technology and Equipment, 2015, 41(10), 7(in Chinese). 张胜玉. 橡塑技术与装备, 2015, 41(10), 7. 26 Zhao T, Zhao Q Y, Wu W W, et al. Composites Part B:Engineering, 2021, 211, 108648. 27 Gao Y H. Ultrasonic welding of short carbon fiber reinforced Nylon66 composite. Master’s Thesis, Zhengzhou University, China, 2015 (in Chinese). 高宇昊. 碳纤维增强尼龙66复合材料的超声波焊接工艺研究. 硕士学位论文, 郑州大学, 2015. 28 Zhi Q. Ultrasonic welding of carbon fiber reinforced Nylon 66 composite without energy director. Ph. D. Thesis, Zhengzhou University, China, 2017 (in Chinese). 支倩. 无导能槽碳纤维增强尼龙66复合材料的超声波焊接. 博士学位论文, 郑州大学, 2017. 29 Rani M R, Prakasan K, Rudramoorthy R. International Journal of Design Engineering, 2014, 5(4), 344. 30 Nguyen T H, Quang Q T, Tran C L, et al. In:Proceedings of 5th Asia Conference on Mechanical and Materials Engineering (ACMME 2017). Tokyo, 2017. 31 Liang M J, Zhou G P, Wang J X. Journal of Shenzhen Polytechnic, 2003(4), 5(in Chinese). 梁明军, 周光平, 王家宣. 深圳职业技术学院学报, 2003(4), 5. 32 Lin S Y, Zhang F C. Acta Acustica, 1992(6), 451(in Chinese). 林书玉, 张福成. 声学学报, 1992(6), 451. 33 Lin S Y. Technical Acoustics, 1992(3), 37(in Chinese). 林书玉. 声学技术, 1992(3), 37. 34 Gao J, Lin S Y. Journal of Shaanxi Normal University(Natural Science Edition), 2009, 37(5), 42(in Chinese). 高健, 林书玉. 陕西师范大学学报(自然科学版), 2009, 37(5), 42. 35 Gao J, Chen X. Technical Acoustics, 2009, 28(6), 807(in Chinese). 高健, 晨曦. 声学技术, 2009, 28(6), 807. 36 Zhang N N. Basic Sciences Journal of Textile Universities, 2017, 30 (3), 390(in Chinese). 张宁宁. 纺织高校基础科学学报, 2017, 30(3), 390. 37 Zhou G P, Liang M J, Wang J X. Technical Acoustics, 2004(3), 183(in Chinese). 周光平, 梁明军, 王家宣. 声学技术, 2004(3), 183. 38 Zhao S J. Ship Electronic Engineering, 2021, 41(1), 162(in Chinese). 赵仕杰. 舰船电子工程, 2021, 41(1), 162. 39 Liang Z F, Zhou G P, Zhang Y H. Machinery Design & Manufacture, 2009(2), 235(in Chinese). 梁召峰, 周光平, 张亦慧. 机械设计与制造, 2009(2), 235. 40 Liang Z F, Zhou G P, Mo X P, et al. Journal of Engineering Design, 2009, 16(3), 200(in Chinese). 梁召峰, 周光平, 莫喜平, 等. 工程设计学报, 2009, 16(3), 200. 41 Du W, Huang Z M. Machinery Design & Manufacture, 2010(5), 246(in Chinese). 杜伟, 黄智明. 机械设计与制造, 2010(5), 246. 42 Tsujino J, Ueoka T, Maru K, et al. In:Proceedings of Symposium on Ultrasonic Electronics. Japan, pp.237. 43 Tsujino J, Ueoka T. Ultrasonics, 1996, 34(2), 229. 44 Azanova A, Galimzyanova R Y, Khisamiyeva L. Key Engineering Materials, 2020, 869, 56. 45 Zhang S Y. China Rubber/Plastics Technology and Equipment, 2020, 46(2), 41(in Chinese). 张胜玉. 橡塑技术与装备, 2020, 46(2), 41. 46 Zhao T, Broek C, Palardy G, et al. Composites Part A:Applied Science and Manufacturing, 2018, 109, 355. 47 Zhao T, Rans C, Villegas I F, et al. Composites Part A:Applied Science and Manufacturing, 2019, 120, 1. 48 Zhao Q Y, Wu H T, Chen X Y, et al. Composite Structures, DOI:10. 1016/j. compstruct. 2022. 115996. 49 Guo R F, Mei X C, Ye M, et al. Modern Manufacturing Technology and Equipment, 2019(12), 15(in Chinese). 郭如峰, 梅雪川, 叶敏, 等. 现代制造技术与装备, 2019(12), 15. 50 Wen Z L, Liu F H. Automobile Parts, 2011(12), 81(in Chinese). 温兆麟, 刘方湖. 汽车零部件, 2011(12), 81. 51 Tian T P. Research on welding path planning of automobile door panel based on improved particle swarm optimization. Master’s Thesis, South China University of Technology, China, 2020(in Chinese). 田天鹏. 基于改进粒子群算法的汽车门板焊接路径规划研究. 硕士学位论文, 华南理工大学, 2020. 52 Pei Z Z. The research on welding components and solder jointrecognition algorithm of automobile door panel. Master’s Thesis, South China University of Technology, China, 2019(in Chinese). 裴泽中. 汽车门板焊接部件和焊点识别算法研究. 硕士学位论文, 华南理工大学, 2019. 53 Cheng X H. Welding path planning of automotive trim based onimproved fruit fly optimization algorithm. Master’s Thesis, South China University of Technology, China, 2019(in Chinese). 程小洪. 基于改进果蝇优化算法的汽车饰件焊接路径规划. 硕士学位论文, 华南理工大学, 2019. 54 Liu F H. New Technology & New Process, 2010(8), 77(in Chinese). 刘方湖. 新技术新工艺, 2010 (8), 77. 55 Senders F, van Beurden M, Palardy G, et al. Advanced Manufacturing:Polymer & Composites Science, 2016, 2(3-4), 83. 56 Jongbloed B, Teuwen J, Benedictus R, et al. Composites Part B:Engineering, DOI:https:∥doi. org/10. 1016/j. compositesb. 2020. 108466. 57 Jongbloed B, Villegas I F, Benedictus R, et al. In:Proceedings of 22nd International Conference on Composite Materials (ICCM). Melbourne, 2019. 58 Takeda S I, Tanks J D, Sugimoto S, et al. Advanced Composite Materials, 2021, 30(2), 192. 59 Jongbloed B, Teuwen J, Palardy G, et al. Journal of Composite Materials, 2020, 54(15), 2023. 60 Jongbloed B, Vinod R, Teuwen J, et al. Composites Part A:Applied Science and Manufacturing, DOI:10. 1016/J. COMPOSITESA. 2022. 106808. 61 Jongbloed B, Teuwen J, Benedictus R, et al. Materials, 2022, 14(21), 6620. 62 Engelschall M, Larsen L, Fischer J C, et al. In:Conference Record of the SAMPE Europe Conference 2019. Nantes, 2019. 63 Larsen L, Görick D, Engelschall M, et al. In:Conference Record of the ITHEC 2020-5th International Conference and Exhibition on Thermoplastic Composites. Bremen, 2020. 64 Köhler F, Jongbloed B, Filipe M M, et al. In:Conference Record of the ITHEC 2018-4th International Conference and Exhibition on Thermoplastic Composites. Bremen, 2018.