Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 22120140-7    https://doi.org/10.11896/cldb.22120140
  金属与金属基复合材料 |
镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究
任东亭1,2, 王文权1, 张新戈1,*, 杜文博3, 朱胜3
1 吉林大学材料科学与工程学院,汽车材料教育部重点实验室,长春 130025
2 中国辐射防护研究院,太原 030006
3 中国人民解放军陆军装甲兵学院,装备再制造技术国防科技重点实验室,北京 100072
Study on Microstructures and Corrosion Resistance of SPS Al-Al2O3 Composite Coatings on Magnesium Alloy Substrate
REN Dongting1,2, WANG Wenquan1, ZHANG Xin’ge1,*, DU Wenbo3, ZHU Sheng3
1 Key Laboratory of Automobile Materials of Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130025, China
2 China Institute for Radiation Protection, Taiyuan 030006, China
3 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces of PLA, Beijing 100072, China
下载:  全 文 ( PDF ) ( 63255KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁合金的耐腐蚀性能差,在工程应用中往往因腐蚀而发生失效,通过表面工程技术对镁合金进行表面改性或防护,是工程应用中采用的重要手段。本工作采用超音速等离子喷涂(Supersonic plasma spray,SPS)工艺在AZ61镁合金表面制备Al-Al2O3复合涂层,其中Al2O3的质量分数分别为30%、50%和70%(下文简称AA30、AA50、AA70)。研究了Al2O3含量对Al-Al2O3复合涂层微观组织、孔隙率、电化学性能以及盐雾耐腐蚀性能的影响。结果表明,涂层的表面呈现熔滴铺展堆叠形成的浪花状形貌,粉末熔化充分,涂层内部结合紧密,各涂层均由Al、α-Al2O3和γ-Al2O3三种物相组成。AA70涂层的孔隙率较AA30和AA50明显升高,达到了6.71%;电化学极化试验研究表明,各涂层比AZ61镁合金基体表现出更高的电极电位和较低的自腐蚀电流密度,AZ61镁合金基体自腐蚀电流密度为5.144 mA·m-2,而AA30、AA50和AA70的自腐蚀电流密度分别为2.950 mA·m-2、3.084 mA·m-2和2.496 mA·m-2,三种涂层相比母材AZ61表现出较低的电化学腐蚀速率。电化学阻抗测试结果表明,三种涂层的Rct达到了AZ61镁合金基体的两倍左右,显示出较低的阳极溶解活性。在盐雾试验中,AZ61镁合金基体产生大量的腐蚀产物和龟裂纹;涂层AA30和AA50由于腐蚀产物的积累产生了大量裂纹,在涂层与基体的界面处发生了电偶腐蚀,最终随着基体表面的腐蚀,涂层产生了剥落;涂层AA70腐蚀程度最小,表现出最佳的抗腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任东亭
王文权
张新戈
杜文博
朱胜
关键词:  超音速等离子喷涂  Al-Al2O3复合涂层  镁合金  孔隙率  耐腐蚀性能    
Abstract: Magnesium alloy corrosion resistance is poor, in engineering applications often due to corrosion and failure, through surface engineering technology to magnesium alloy surface modification or protection, is an important means used in engineering applications. In this work, the supersonic plasma spray (SPS) process was used to prepare Al-Al2O3 composite coating on the surface of AZ61 magnesium alloy, in which the mass fractions of Al2O3 were 30%, 50% and 70% (hereinafter referred to as AA30, AA50 and AA70), and the effects of Al2O3 content on the microstructure, porosity, electrochemical properties and corrosion resistance of Al-Al2O3 composite coatings were studied. The results show that the surface of the coating presents a wave-like morphology formed by the spread and stacking of molten droplets, the powder is fully melted, and the internal bonding of the coating is tight. And the coating was composed of Al, α-Al2O3 and γ-Al2O3 phases. The porosity of AA70 coating was significantly higher than that of AA30 and AA50, reaching 6.71%. In the electrochemical polarization test, each coating showed higher electrode potential and lower self-corrosion current density than that of AZ61 magnesium alloy. The test revealed that AZ61 self-corrosion current density was 5.144 mA·cm-2, while AA30, AA50 and AA70 self-corrosion current densities were 2.950 mA·cm-2, 3.084 mA·cm-2 and 2.496 mA·cm-2, respectively. The coatings of AA30, AA50 and AA70 showed a lower corrosion rate than that of the base metal AZ61. The electrochemical impe-dance test results showed that the Rct of the three coatings reached about twice that of the AZ61 magnesium alloy matrix, showing lower anodic solubilization activity. In the salt spray test, a large number of corrosion products and cracks are produced on the surface of AZ61 magnesium alloy. Coatings AA30 and AA50 have a large number of cracks in the coating due to the accumulation of corrosion products, and galvanic corrosion occurs at the interface between the coating and the substrate. Eventually, as the surface of the substrate corrodes, the coating peels off. The coating AA70 has minimal corrosion rate and provides optimum corrosion resistance for long-term protection of the substrate.
Key words:  supersonic plasma spray(SPS)    Al-Al2O3 composite coating    magnesium alloy    porosity    corrosion resistance
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TG174.44  
基金资助: 国防科技重点实验室基金(6142005200301)
通讯作者:  *张新戈,吉林大学材料科学与工程学院副教授、博士研究生导师。2004年获得吉林大学学士学位,2006年获得哈尔滨工业大学硕士学位,2011年获得哈尔滨工业大学博士学位。长期从事新材料连接和增材制造领域的教学和科研工作。发表SCI/EI检索论文30余篇,授权发明专利5项。zhangxinge@jlu.edu.cn   
作者简介:  任东亭,2023年6月于吉林大学获得工学硕士学位。现就职于中国辐射防护研究院。主要研究领域为表面改性、等离子喷涂。
引用本文:    
任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
REN Dongting, WANG Wenquan, ZHANG Xin’ge, DU Wenbo, ZHU Sheng. Study on Microstructures and Corrosion Resistance of SPS Al-Al2O3 Composite Coatings on Magnesium Alloy Substrate. Materials Reports, 2024, 38(16): 22120140-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120140  或          http://www.mater-rep.com/CN/Y2024/V38/I16/22120140
1 Zhao H L, Guan S K, Zheng F Y. Journal of Materials Research, 2007, 22, 2423.
2 Guo H F, An M Z, Xu S, et al. Materials Letters, 2006, 60, 12.
3 Gun H, Ma S. Science and Engineering of Composite Materials, 2016, 23(5), 467.
4 Li J R. Corrosion and discharge behavior of AZ63 magnesium alloy in sodium chloride solution. Ph. D. Thesis, Institute of Oceanology, Chinese Academy of Sciences, China, 2017 (in Chinese).
李佳润. AZ63镁合金在氯化钠溶液中的腐蚀及放电行为研究. 博士学位论文, 中国科学院大学(中国科学院海洋研究所), 2017.
5 Xu L, Cao H J, Liu H L, et al. International Journal of Advanced Manufacturing Technology, 2017, 90, 1383.
6 Cai L L. Study on Al2O3 particles reinforced Ni-based alloy composite coating of microstructure and wear resistance. Master’s Thesis, Lanzhou University of Technology, China, 2016 (in Chinese).
蔡龙龙. Al2O3颗粒增强Ni60A复合涂层组织与耐磨性能研究. 硕士学位论文, 兰州理工大学, 2016.
7 Li C J. Thermal Spray Technology, 2018, 10(4), 1 (in Chinese).
李长久. 热喷涂技术, 2018, 10(4), 1.
8 Lalit Thakur, Hitesh Vasudev. Thermal spray coatings, CRC Press, 2021.
9 Smith R W, Knight R. Journal of the Minerals, Metals and Materials Society, 1995, 47(8), 32.
10 Sobolev V V, Guilemany J M. International Materials Reviews, 1996, 41(1), 13.
11 Schwetzke R, Kreye H. Journal of Thermal Spray Technology, 1999, 8(3), 433.
12 Kamnis S, Gu S. Chemical Engineering and Processing, 2006, 45(4), 246.
13 Gao Y, Xu X L, Yan Z J , et al. Surface and Coatings Technology, 2002, 154, 2.
14 Yin Z J, Tao S Y, Zhou X M. Materials Characterization, 2011, 62, 1.
15 Sun G H, He X D, Jiang J X, et al. Applied Surface Science, 2011, 257, 17.
16 Ma K. Study on microstructure and properties of plasma-strayed Al/Al2O(3p) composite coating on magnesium alloy. Ph. D. Thesis, JiLin University, China, 2010(in Chinese).
马凯. 镁合金等离子喷涂Al/Al2O(3p)复合材料涂层组织与性能研究. 博士学位论文, 吉林大学, 2010.
17 Yi X. Tribological and corrosion properties of plasma spraying Al2O3/Al2O3-TiO2 reinforced aluminum and nickel-based coatings. Master’s Thesis, Harbin Institute of Technology, China, 2013(in Chinese).
易祥. 等离子喷涂Al2O3/Al2O3-TiO2增强铝基和镍基涂层的摩擦学及腐蚀性能. 硕士学位论文, 哈尔滨工业大学, 2013.
18 Sun, H H, Ma, S Q. Science and Engineering of Composite Materials, 2016, 23, 467.
19 Zamani P, Valefi Z, Jafarzadeh K. Ceramics International, 2022, 48, 1574.
20 Liu C, Bi Q, Leyland A. Corrosion Science, 2003, 45, 1257.
21 Yao Z P, Jiang Z H, Xin S G, et al. Electrochim Acta, 2005, 50, 3273.
22 Yue Y Y, Liu Z X, Wan T T, et al. Progress in Organic Coatings, 2013, 76, 835.
23 Shao F, Yang K, Zhao H Y, et al. Surface and Coatings Technology, 2015, 276, 8.
[1] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[2] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[3] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[4] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[5] 张娜娜, 李全安, 陈晓亚, 陈培军, 谭劲峰. 高性能镁合金轧制成形研究进展[J]. 材料导报, 2024, 38(2): 22080125-9.
[6] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[7] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[8] 计鸿鑫, 任伟杰, 蒋先贤, 杜文宇, 孙静娜, 黄华贵. 镁合金板材弯曲回弹预测与控制研究进展[J]. 材料导报, 2024, 38(15): 23080183-7.
[9] 肖雯心, 王叶, 马凯, 代朝能, 裴三略, 王丹芊, 王敬丰. 镁合金表面化学转化涂层研究进展[J]. 材料导报, 2024, 38(12): 23010121-12.
[10] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[11] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[12] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[13] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[14] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[15] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed