Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23010004-6    https://doi.org/10.11896/cldb.23010004
  无机非金属及其复合材料 |
蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究
康小雅, 何天启, 朱福良, 冉奋*
兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Study of Sulfur Loaded in Honeycomb-Like Porous Carbon Materials and Energy Storage Performance in Lithium-Sulfur Battery
KANG Xiaoya, HE Tianqi, ZHU Fuliang, RAN Fen*
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 14689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单质硫及其放电最终产物Li2S的绝缘性以及两者密度差异引起的结构坍塌等问题严重阻碍了锂硫电池的进一步发展,找寻合适的基体材料是解决上述问题的有效策略。本工作选用一种蜂窝状多孔碳作为硫正极的基体材料,通过常规的熔融扩散法将硫单质固定在碳孔隙中,并利用SEM、XRD、XPS和BET等方法对多孔碳@单质硫复合材料进行了表征。结果表明,硫单质均匀地负载在碳骨架中。同时,蜂窝状结构碳不仅为硫单质提供了电子导电网络,也保证了正极的稳定性。更重要的是,蜂窝状的结构为循环过程中硫正极的体积膨胀提供了一定的缓冲空间,缓解了结构坍塌这一问题。此外,碳基体丰富的孔隙度在一定程度上减少了多硫化物的穿梭。因此,在0.1C的倍率下,多孔碳@单质硫复合材料首次放电比容量高达1 125.9 mAh/g,300次循环后比容量可保持305.1 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康小雅
何天启
朱福良
冉奋
关键词:  锂硫电池  正极材料  蜂窝状多孔碳  电化学性能    
Abstract: The further development of lithium sulfur battery is severely hindered by the insulation of elemental sulfur and its final product Li2S as well as the structural collapse caused by their density difference, so finding a suitable carrier material is an efficient strategy to address the above-mentioned problems. In this work, a honeycomb-like porous carbon is selected as the host material for the sulfur cathode, the sulfur is immobilized in the pores of porous carbon by conventional melt diffusion method, and porous carbon@sulfur composite is characterized by SEM, XRD, XPS and BET techniques. The results show that the sulfur was uniformly loaded in the carbon skeleton. Meanwhile, the high electrical conductivity and honeycomb-like structure of porous carbon not only provide an electronic conductive network for the sulfur, but also ensures the stability of the cathode. More importantly, the honeycomb structure gives some buffer space for the volume expansion of the sulfur cathode during the cycling process, which lessens the trouble of structural collapse. In addition, the abundant pores in the host material decrease the shuttling of polysulfides to some extent. Therefore, the specific capacity of porous carbon@sulfur composite can deliver 1 125.9 mAh/g at 0.1C during the first discharging and maintain 305.1 mAh/g after 300 cycles.
Key words:  lithium-sulfur battery    cathode material    honeycomb-like porous carbon    electrochemical performance
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  O646.21  
基金资助: 国家自然科学基金(51763014;52073133);甘肃省重点人才项目
通讯作者:  *冉奋,兰州理工大学材料科学与工程学院教授、博士研究生导师,科睿唯安“高被引学者”。沈阳化工大学高分子复合材料本科毕业,分别于北京化工大学材料科学与工程学院(化工资源有效利用国家重点实验室)、四川大学高分子科学与工程学院(高分子材料工程国家重点实验室)获得工学硕士、工学博士学位。新加坡国立大学访问研究员、美国加州大学圣克鲁斯分校访问学者,美国加州大学圣芭芭拉分校学习双语教育教学法。在Advanced Energy Materials、Materials Science & Engineering R-Reports InfoMat、Acta Materialia等期刊发表论文150余篇。ranfen@163.com,ranfen@lut.edu.cn   
作者简介:  康小雅,2018年在兰州理工大学高分子材料与工程专业获得学士学位,2021年硕士毕业于兰州理工大学高分子材料物理与化学。目前在兰州理工大学攻读博士学位,从事新能源材料的研究。
引用本文:    
康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
KANG Xiaoya, HE Tianqi, ZHU Fuliang, RAN Fen. Study of Sulfur Loaded in Honeycomb-Like Porous Carbon Materials and Energy Storage Performance in Lithium-Sulfur Battery. Materials Reports, 2024, 38(16): 23010004-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010004  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23010004
1 Yang Y, Zheng G Y, Cui Y. Chemical Society Reviews, 2013, 42(7), 3018.
2 Li C W. Journal of Chongqing Technology and Business University (Natural Science Edition), 2005, 22(3), 265(in Chinese).
李翠薇. 重庆工商大学学报(自然科学版), 2005, 22(3), 265.
3 Seh Z W, Sun Y M, Zhang Q F, et al. Chemical Society Reviews, 2016, 45(20), 5605.
4 Ye H L, Li Y G. InfoMat, 2022, 4(5), e12291.
5 Song Y Z, Cai W L, Kong L, et al. Advanced Energy Materials, 2019, 10(11), 1901075.
6 Yan Y Y, Cheng C, Zhang L, et al. Advanced Energy Materials, 2019, 9(18), 1900148.
7 Zhou S Y, Yang S, Cai D, et al. Advanced Science, 2022, 9(3), e2104205.
8 Xu H F, Hu R M, Zhang Y Z, et al. Energy Storage Materials, 2021, 43, 212.
9 Li X Y, Feng S, Zhao M, et al. Angewandte Chemie-International Edition, 2022, 61(7), e202114671.
10 Jin Z S, Zhao M, Lin T N, et al. Journal of Materials Chemistry A, 2020, 8(21), 10885.
11 Wang R, Yang J L, Chen X, et al. Advanced Energy Materials, 2020, 10(9), 1903550.
12 Liang Z W, Shen J D, Xu X J, et al. Advanced Materials, 2022, 34, 2200102.
13 Su H, Lu L Q, Yang M Z, et al. Chemical Engineering Journal, 2022, 429, 132167.
14 Chen H, Wu Z Z, Zheng M T, et al. Materials Today, 2022, 52, 364.
15 Wang M Q, Emre A E, Kim J Y, et al. Nature Communications, 2022, 13(1), 278.
16 Huang S, Huixiang E, Yang Y, et al. Journal of Materials Chemistry A, 2021, 9(12), 7458.
17 Luo D, Li C J, Zhang Y G, et al. Advanced Materials, 2021, 34(2), e2105541.
18 Hua W X, Li H, Pei C, et al. Advanced Materials, 2021, 33(38), e2101006.
19 Lei J, Fan X X, Liu T, et al. Nature Communications, 2022, 13(1), 202.
20 Yang Z, Zhao Z Y, Zhou H R, et al. ACS Applied Materials & Interfaces, 2021, 13(43), 51174.
21 Zou R, Liu W W, Ran F. InfoMat, 2022, 4(8), e12319.
22 Dai C L, Jin X T, Ma H Y, et al. Advanced Energy Materials, 2021, 11(14), 2003982.
23 Zhou Y X, Shi T Y, Zhao C Y, et al. Materials Reports, 2024, 38(1), 22060085(in Chinese).
周宇祥, 施天宇, 赵晨媛, 等. 材料导报, 2024, 38(1), 22060085.
24 Feng Y T, Zu L H, Yang S S, et al. Advanced Functional Materials, 2022, 32(40), 2207579.
25 Zhang J Y, Xu G B, Zhang Q, et al. Advanced Science, 2022, 9(22), 2201579.
26 Cui C J, Zhao Y N, Liu Y, et al. Materials Reports, 2023, 37 (5), 21080095(in Chinese).
崔春娟, 赵亚男, 刘跃, 等. 材料导报, 2023, 37 (5), 21080095.
27 Liu G H, Luo D, Gao R, et al. Small, 2020, 16(37), 2001089.
28 Li L G, Fan B, Zhao D K, et al. ChemElectroChem, 2021, 7(24), 4990.
29 Wang Z S, Shen J D, Ji S M, et al. Small, 2020, 16, 1906634.
30 Cha E, Patel M D, Park J, et al. Nature Nanotechnology, 2018, 13(4), 337.
31 Su Y S, Manthiram A. Nature Communications, 2012, 3(1), 1166.
32 Yang Z, Zhao Z Y, Zhou H R, et al. ACS Applied Materials&Interfaces, 2021, 13(43), 51174.
33 Feng L X, Yu P, Fu X W, et al. ACS Nano, 2022, 16(5), 7982.
34 Huang J Q, Zhuang T Z, Zhang Q, et al. ACS Nano, 2015, 9(3), 3002.
35 Li Z L, Xiao Z B, Wang S Q, et al. Advanced Functional Materials, 2019, 29(31), 1902322.
36 Li H F, Yang X W, Wang X M, et al. Nano Energy, 2015, 12, 468.
37 Wang Z S, Shen J D, Xu X J, et al. Small, 2022, 18, 2106640.
[1] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[2] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[3] 帕提曼·阿不都, 何一涛, 白翔, 伊尔夏提·地里夏提, 罗新泽, 何晓燕, 闫秀玲, 李海金. 双离子电池中阴离子可逆体系设计与正极材料研究进展[J]. 材料导报, 2024, 38(2): 22070163-13.
[4] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[5] 姜宇, 杨蓉, 张乾伟, 樊潮江, 董鑫, 蒋百铃, 燕映霖. 功能化MXene在锂硫电池中应用研究进展[J]. 材料导报, 2024, 38(12): 22100251-9.
[6] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[7] 周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
[8] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[9] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[10] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[11] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[12] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[13] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[14] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[15] 何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed