Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22040351-6    https://doi.org/10.11896/cldb.22040351
  无机非金属及其复合材料 |
锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响
何思瑶1, 魏闯2, 康鑫1, 李素平1,*
1 郑州大学河南省高温功能材料重点实验室,郑州 450052
2 中国石油天然气管道科学研究院有限公司,河北 廊坊 065000
Effects of Spodumene Addition on the Properties of Saggers for Calcined Lithium Cobalt Oxide Cathode Materials
HE Siyao1, WEI Chuang2, KANG Xin1, LI Suping1,*
1 Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou 450052, China
2 CNPC Pipeline Research Institute, Langfang 065000, Hebei, China
下载:  全 文 ( PDF ) ( 12318KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善钴酸锂正极材料用堇青石-莫来石质匣钵的性能,延长其使用寿命,以锂辉石细粉部分取代堇青石-莫来石质匣钵材料中的堇青石细粉,研究了锂辉石加入量对堇青石-莫来石质匣钵材料的非晶相含量、烧结性能、力学性能、物相组成和显微结构以及抗钴酸锂正极材料侵蚀性能的影响。结果表明:由于锂辉石的引入,体系由MgO-Al2O3-SiO2变成Li2O-MgO-Al2O3-SiO2四元体系,其最低共熔温度降低,非晶相含量增加,材料气孔率降低,材料强度随锂辉石加入量的增加先升高后降低,当锂辉石加入量为4%(质量分数,下同)时,其常温抗折强度、耐压强度和1 100 ℃热态抗折强度均达到最大值,分别为13.5 MPa、95.8 MPa和11.3 MPa。材料热震后残余抗折强度随锂辉石加入量的增加先升高后降低,残余强度保持率略微降低。当锂辉石加入量为4%时,材料抗钴酸锂正极材料侵蚀性能最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何思瑶
魏闯
康鑫
李素平
关键词:  锂辉石  钴酸锂正极材料  匣钵  抗侵蚀性    
Abstract: In order to improve the properties of cordierite-mullite sagger and prolong its service life, spodumene fine powder is used to partially replace the cordierite fine powder in cordierite-mullite sagger materials. The effects of spodumene addition on the amorphous phase content, sintering properties, mechanical properties, phase composition and microstructure of cordierite-mullite sagger materials and corrosion resistance of lit-hium cobalt oxide cathode materials were studied. The results show that with the introduction of spodumene, the system changes from MgO-Al2O3-SiO2 to Li2O-MgO-Al2O3-SiO2 quaternary system, the lowest eutectic temperature decreases, the content of amorphous phase increases, the porosity of the material decreases, and the strength of the sagger materials increases first and then decreases. When the spodumene addition is 4wt%, the cold modulus of rupture, cold crushing strength and hot modulus of rupture at 1 100 ℃ of the sagger material reach the maximum values, which are 13.5 MPa, 95.8 MPa and 11.3 MPa, respectively. The residual flexural strength of the materials after thermal shock increases first and then decreases with the increase of spodumene addition, and the retention rate of residual strength decreases slightly. The sagger material with 4wt% spodumene addition has the best corrosion resistance to lithium cobalt oxide cathode.
Key words:  spodumene    lithium cobalt oxide cathode material    agger    corrosion resistance
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TQ175.71  
基金资助: 国家自然科学基金(51872266;52172031);河南省科技攻关项目(222102230030)
通讯作者:  * 李素平,郑州大学材料科学与工程学院副教授、博士、硕士研究生导师。1988年天津大学材料科学与工程学院无机非金属专业本科毕业,2010年郑州大学材料科学与工程学院材料学专业博士毕业。目前主要从事高温结构陶瓷、耐火材料及纳米材料的制备及应用研究。发表学术论文70余篇,包括Ceramics International、Journal of Materials Science等,获得授权中国发明专利4项。lisuping@zzu.edu.cn   
作者简介:  何思瑶,2020年6月于沈阳建筑大学获得工学学士学位。现为郑州大学材料科学与工程学院硕士研究生,在李素平副教授的指导下进行研究。目前主要研究领域为无机非金属耐火材料的制备与研究。
引用本文:    
何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
HE Siyao, WEI Chuang, KANG Xin, LI Suping. Effects of Spodumene Addition on the Properties of Saggers for Calcined Lithium Cobalt Oxide Cathode Materials. Materials Reports, 2023, 37(22): 22040351-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040351  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22040351
1 Guan Z B, Zhu S B. New Materials Industry, 2018(9), 23 (in Chinese).
关志波, 朱素冰. 新材料产业, 2018(9), 23.
2 Li L, Xu Y. China Manganese Industry, 2020, 38(5), 9 (in Chinese).
李磊, 许燕. 中国锰业, 2020, 38(5), 9.
3 Zhai P T, Chen L G, Yin Y T, et al. Journal of the European Ceramic Siociety, 2018, 38(4), 2145.
4 Duan X K, Zheng H, Chen Y Q, et al. Ceramics International, 2020, 46(3), 2829.
5 Zhai P T, Liu M Y, Zhou W Y, et al. Refractory, 2021, 55(2), 102 (in Chinese).
翟鹏涛, 刘明杨, 周文英, 等. 耐火材料, 2021, 55(2), 102.
6 Zhai P T, Chen L G, Yin Y T, et al. Journal of the European Ceramic Society, 2018, 38(4), 2145.
7 Duan X K, Zheng H, Chen Y Q, et al. Ceramics International, 2020, 46(3), 2829.
8 Wang H L, Li S J, Li Y B, et al. Ceramics International, 2021, 47(3), 4049.
9 Cao A H. Chinese Ceramics, 2006, 42(7), 30 (in Chinese).
曹爱红. 中国陶瓷, 2006, 42(7), 30.
10 Abdullah A A, Oskierski H C, Altarawneh M, et al. Minerals Engineering, 2019, 140, 105883.
11 Xu X H, Xu X Y, Wu J F, et al. Ceramics International, 2015, 41(9), 11861.
12 Manurung P, Low I M, O’connor B H, et al. Materials Research Bulletin, 2005, 40(12), 2047.
13 Shi C G, Low I M. Materials Letters, 1998, 36(1-4), 118.
14 Awaad M, Mortel H, Naga S. Journal of Materials Science Materials in Electronics, 2005, 16(6), 377.
15 Li Y H, Cao J W, Liang K M. British Ceramic Transactions, 2013, 108(4), 226.
16 Wu J F, Hu C, Xu X H, et al. Ceramics International, 2016, 42(12), 13547.
17 Wu J F, Hu C, Ping C, et al. Ceramics International, 2018, 44(16), 19590.
18 Naga S M, El-Maghraby A A, Hassan A M. Ceramics International, 2016, 42(10), 12161.
19 Athanasius P, Bayuseno, Bruno A, et al. Journal of the American Ceramic Society, 1999, 82(4), 819.
20 Wei Chuang, Kang Xin, He Siyao, et al. Chinese Ceramics, 2021, 57(11), 40 (in Chinese).
魏闯, 康鑫, 何思瑶, 等. 中国陶瓷, 2021, 57(11), 40.
21 Karkhanavala M D, Hummel F A. Journal of the American Ceramic Society, 1953, 36(12), 393.
[1] 李保亮, 尤南乔, 朱国瑞, 霍彬彬, 张亚梅. 蒸养条件下锂渣复合水泥的水化产物与力学性能[J]. 材料导报, 2019, 33(24): 4072-4077.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed