Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4072-4077    https://doi.org/10.11896/cldb.18120096
  无机非金属及其复合材料 |
蒸养条件下锂渣复合水泥的水化产物与力学性能
李保亮, 尤南乔, 朱国瑞, 霍彬彬, 张亚梅
东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
Hydration Products and Mechanical Properties of Steam Cured Lithium Slag Blended Cement
LI Baoliang, YOU Nanqiao, ZHU Guorui, HUO Binbin, ZHANG Yamei
Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2867KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 利用电感耦合等离子体发射光谱(ICP)、X射线衍射分析(XRD)、扫描电子显微镜与能谱分析(SEM-EDS)及同步热分析(TG-DTG)等手段研究了掺20%锂渣复合水泥在80 ℃蒸养7 h、7 d和标养28 d条件下的水化产物与力学性能。结果表明:锂渣中SiO2和Al2O3大部分存在于锂辉石中,而少量存在于玻璃体中,且锂渣中存在少量的碳酸盐。与纯水泥不同,锂渣复合水泥在以上三种养护条件下形成的C-S-H凝胶均主要为网状;此外,蒸养7 d时还有水化硫铝酸钙(AFt)和立方体CaCO3生成,但无水化石榴石形成;蒸养28 d时,还有球形等大颗粒状C-S-H凝胶和立方体CaCO3生成。蒸养可以促进锂渣和水泥的反应,尤其是锂辉石与水泥水化产物氢氧化钙的反应。在蒸养7 h和7 d条件下,锂渣复合水泥胶砂的抗折强度、抗压强度均明显高于纯水泥胶砂的抗折强度、抗压强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李保亮
尤南乔
朱国瑞
霍彬彬
张亚梅
关键词:  锂渣  水泥  蒸养  水化产物  强度  锂辉石    
Abstract: In this investigation, 20% of lithium slag (LS) was used to replace Portland cement (PC) to prepare LS blended cement. The hydration pro-ducts and mechanical properties of steam cured (80 ℃ for 7 h and 7 d) and standard cured (28 d) LS blended cement were compared by ICP, XRD, SEM-EDS and TG-DTG methods. The results show that, most of SiO2 and Al2O3 in LS exist in spodumene, while a few exist in amorphous phases, and a small amount of carbonate is found in LS as well. The addition of LS changes the morphology and composition of cement hydration products: under steam curing for 7 h, C-S-H of PC is mainly fibrous, while for LS blended cement, it is mainly reticular; under steam curing for 7 d, in the hydration products of PC, C-S-H is mainly fibrous accompanied by the formation of granular hydrogarnet, while for LS blended cement, C-S-H is reticular with the formation of AFt and cubic CaCO3, but no hydrogarnet is formed; under standard curing for 28 d, the morphology of C-S-H in PC is reticular while that of LS blended cement is mainly reticular and equant grains, as well as the formation of cubic CaCO3. Steam curing can promote the reaction between spodumene and calcium hydroxide from cement hydration. It is worth noting that the flexural and compressive strength of LS blended cement mortar are significantly higher than that of PC mortar under the condition of steam curing for 7 h and 7 d.
Key words:  lithium slag    cement    steam curing    hydration product    strength    spodumene
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TU528  
基金资助: 中日政府间科技合作项目(2016YFE0118200);国家自然科学基金(51778132);国家973项目(2015CB655100);中央高校基本科 研业务费专项资金和江苏省研究生科研与实践创新计划项目(KYCX17_0068)
作者简介:  李保亮,2011年硕士毕业于济南大学材料科学与工程专业,2015年9月师从东南大学张亚梅教授,攻读博士研究生,主要研究方向为镍渣基复合胶凝材料;张亚梅,东南大学结构工程专业博士,东南大学材料科学与工程学院教授、博士研究生导师,江苏省先进土木工程材料协同创新中心副主任,2015年东南大学“十佳导师”。1990年毕业于东南大学土木系获学士学位,1998年毕业于东南大学材料系获博士学位。曾任江苏省土木工程材料重点实验室常务副主任。现为ACI CC(美国混凝土学会中国分会)理事,SAC(中国国家标准化委员会)注册ISO TC71专家,中国混凝土与水泥制品协会固废分会建筑固废专委会主任委员,中国土木工程学会再生混凝土分会副主任委员,中国硅酸盐学会水泥化学分会委员,中国混凝土与水泥制品协会预制混凝土构件分会理事,fib(The International Federation for Structural Concrete) TG3.10委员,fib com.9 委员;Cement and Concrete Composite编委。日本可持续发展协会客座研究员。负责或参与国家自然科学基金项目、973项目子题、重大工程技术攻关项目及企业合作项目等40多项;曾获教育部科技进步二等奖、华夏建设科技一等奖等。研究方向:固体废弃物的资源化利用技术、碱激发胶凝材料、建筑节能新材料、高性能纤维增强水泥基复合材料等。
引用本文:    
李保亮, 尤南乔, 朱国瑞, 霍彬彬, 张亚梅. 蒸养条件下锂渣复合水泥的水化产物与力学性能[J]. 材料导报, 2019, 33(24): 4072-4077.
LI Baoliang, YOU Nanqiao, ZHU Guorui, HUO Binbin, ZHANG Yamei. Hydration Products and Mechanical Properties of Steam Cured Lithium Slag Blended Cement. Materials Reports, 2019, 33(24): 4072-4077.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120096  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4072
1 Zhang L F. Journal of Liaoning Technical University, 2007, 26(6),877(in Chinese).张兰芳. 辽宁工程技术大学学报, 2007, 26(6),877.2 Chen D, Hu X, Shi L, et al. Applied Clay Science, 2012, 59-60,148.3 Tan H, Li X, He C, et al. Journal of Wuhan University of Technology(Materials Science Edition), 2015, 30(1), 129.4 Tan H, Zhang X, He X, et al. Journal of Cleaner Production, 2018, 205, 536.5 Zhai M Y, Zhao J H, Wang D M. Materials Review A:Review Papers, 2017, 31(3),139(in Chinese).翟梦怡, 赵计辉, 王栋民. 材料导报:综述篇, 2017, 31(3),139.6 He Z H, Li L Y, Du S G. Construction and Building Materials, 2017, 147,296.7 Dong S K, Zhu X P, Wu F F, et al. Journal of Water Resources & Water Engineering, 2015(3),100(in Chinese).董双快, 朱新萍, 吴福飞,等. 水资源与水工程学报, 2015(3),100.8 Han G Q,Wen Y,Wang C,et al. China Concrete and Cement Products,2017(7),22(in Chinese).韩国旗, 温勇, 王晨,等. 混凝土与水泥制品, 2017(7),22.9 Liu J, He W, Wang D M. Journal of Chinese Electron Microscopy Society, 2017, 36(6),571(in Chinese).刘进, 何伟, 王栋民. 电子显微学报, 2017, 36(6),571.10 Aldea C M, Young F, Wang K, et al. Cement and Concrete Research, 2000, 30(3), 465.11 Zhang Z, Provis J L, Zou J, et al. Cement and Concrete Research, 2016, 85, 163.12 Botto I L. Materials Chemistry and Physics, 1985, 13(5), 423.13 Chan S Y N, Ji X. Cement and Concrete Composites, 1999, 21(4), 293.14 Jappy T G, Glasser F P. Advances in Cement Research, 1991, 4(13), 1.15 Ding J, Fu Y, Beaudoin J J. Advances in Cement Research, 1995, 7(28), 171.16 Black L, Breen C, Yarwood J, et al. Journal of Materials Chemistry, 2006, 16(13), 1263.17 Wang D, Shi C, Wu Z, et al. Construction and Building Materials, 2015, 96, 368.18 Heikal M, Radwan M M, Morsy M S. Ceramics-Silikáty, 2004, 48, 185.19 Liu B, Xie Y, Li J. Cement and Concrete Research, 2005, 35(5), 994.20 Han J G, Yan P Y. Journal of the Chinese Ceramic Society, 2010, 38(4), 608(in Chinese).韩建国, 阎培渝. 硅酸盐学报, 2010, 38(4),608.21 Najimi M, Sobhani J, Ahmadi B, et al. Construction and Building Materials, 2012, 35, 1023.22 Yllmaz B, Uçar A, Öteyaka B, et al. Building and Environment, 2007, 42(11),3808.23 Karakurt C, Topçu İ B. Construction and Building Materials, 2012, 35,906.24 Ríos C A, Williams C D, Fullen M A. Applied Clay Science, 2009, 43(2), 228.25 Li B, Huo B, Cao R, et al. Cement and Concrete Composites, 2019, 96, 204.26 Durdziński P T. Hydration of multi-component cements containing cement clinker, slag, calcareous fly ash and limestone. Ph.D. Thesis, EPFL, Switzerland, 2016.27 Li X, Yan P Y. Journal of Central South University (Science and Techno-logy), 2010, 41(6), 2321(in Chinese).李响, 阎培渝. 中南大学学报 (自然科学版), 2010, 41(6),2321.28 Zhang C M, Ramachandran V S. Journal of the Chinese Ceramic Society, 1988, 16(2), 110(in Chinese).章春梅, Ramachandran V S. 硅酸盐学报, 1988, 16(2), 110.
[1] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[2] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[3] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[4] 余鑫, 于诚, 姜骞, 冉千平, 刘加平, 杨斌. 采用原位XRD研究早强剂对水泥早期水化的影响[J]. 材料导报, 2020, 34(2): 2058-2062.
[5] 康宁, 陈灼, 徐双林, 单优, 赵长春. Eu3+,Ce4+掺杂NaAlSiO4的制备及发光性能[J]. 材料导报, 2019, 33(Z2): 10-12.
[6] 郑晗煜, 蒲永平, 李来平, 薛建嵘, 高选乔, 胡忠武, 任广鹏. 储能介电玻璃陶瓷的制备及研究进展[J]. 材料导报, 2019, 33(Z2): 20-23.
[7] 宋涛, 杨杰, 赵松海, 尚海涛, 白超超. 石膏基自流平砂浆耐磨性能研究[J]. 材料导报, 2019, 33(Z2): 239-241.
[8] 杜华川, 王延宁, 何苗苗, 林梓锋, 吕正宗. 有机缓凝剂对水泥改性乳化沥青胶浆的改善效果研究[J]. 材料导报, 2019, 33(Z2): 254-260.
[9] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[10] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[11] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[12] 何欢, 杨荣俊, 文俊强, 唐芮枫, 王子明. 车桥耦合扰动对硫铝酸盐水泥混凝土修补材料性能的影响[J]. 材料导报, 2019, 33(Z2): 288-292.
[13] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[14] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[15] 吕菲, 田原, 宋晶, 杨春颖, 刘雪松. 化学腐蚀工艺对锗单晶片机械强度的影响[J]. 材料导报, 2019, 33(Z2): 428-430.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed