Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4066-4071    https://doi.org/10.11896/cldb.18110162
  无机非金属及其复合材料 |
非线性梯度胞元分布蜂窝材料的冲击力学响应
胡俊1, 任建伟1,2, 王爱国3, 吴德义1
1 安徽建筑大学,建筑结构与地下工程安徽重点实验室,合肥 230601
2 南京航空航天大学多功能轻量化材料与结构研究中心,南京 210016
3 安徽建筑大学安徽先进建筑材料重点实验室,合肥 230601
Dynamic Responses of Cellular Materials with Nonlinear Graded Cell Distribution Subjected to Impact Loading
HU Jun1, REN Jianwei1,2, WANG Aiguo3, WU Deyi1
1 Key Laboratory of Building Structure and Underground Engineering of Anhui, Anhui Jianzhu University, Hefei 230601
2 Multifunctional Lightweight Materials and Structure Research Center (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing 210016
3 Key Laboratory of Advanced Building Materials of Anhui Province, Anhui Jianzhu University, Hefei 230601
下载:  全 文 ( PDF ) ( 4051KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以自然界中蜂窝材料胞元分布规律为依据,建立四种蜂窝模型,探究梯度分布规律对蜂窝材料动态力学性能的影响。运用有限元分析方法,分析不同冲击荷载下各类型蜂窝的冲压变形模式、承载能力、应变率敏感度和冲击波传播特性。分析结果表明,非线性梯度蜂窝材料的初始密实区域呈弥散分布,而非连贯型密实带;其密实过程相较于传统蜂窝材料更为均匀。胞元非线性梯度分布使蜂窝材料具有“骨架”效应,导致蜂窝材料的密实应变和平台区应力等提升10%~30%。框架梯度分布使蜂窝材料整体的应变率效应敏感度降低约50%,显著提高材料动力学性能的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡俊
任建伟
王爱国
吴德义
关键词:  蜂窝材料  非线性梯度分布  冲击荷载  动力学性能  应变率效应    
Abstract: According to the cellular distribution rule of honeycomb materials in nature, four honeycomb models were established to investigate the inf-luence of gradient cell distribution on the dynamic performance of honeycomb materials. The finite element analysis was employed to analyze the characteristics of deformation mode, bearing capability, strain-rate sensitivity and diffusion property of impact stress of diverse honeycomb materials under various impact loadings. The major results in this study can be concluded as follow. The initial crushing region of nonlinear graded honeycomb materials presented a dispersed distribution, other than a continuous distribution. The nonlinear graded honeycomb materials possessed a more homogenous densification process than conventional honeycomb materials. Besides, the nonlinear graded distribution of cells, endowed the honeycomb materials with the effect of framework effect, which resulted in improvement of densification strain and plateau stress by 10%—30%. Furthermore, the graded distribution of the frame also brought about 50% reduction of strain-rate sensitivity of the bulk honeycomb materials, showing a notable enhanced stability of the dynamic performances.
Key words:  honeycomb materials    nonlinear gradient distribution    impact loading    dynamic performances    strain rate effect
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  O347  
基金资助: 国家自然科学基金(51778003);安徽省教育厅高校自然科学研究重点项目(KJ2017A486)
作者简介:  胡俊,安徽建筑大学,副教授,硕士研究生导师。2012年中国科学技术大学近代力学系工学博士毕业。近5年主持或参与多项国家级及省部级科研项目,发表数十篇学术论文,其中EI/SCI收录多篇。其主要科研方向为高程及大跨度结构抗震、材料动力学性能等;王爱国,安徽建筑大学,副教授,硕士研究生导师。2002年加入安徽建筑大学工作至今。2010年毕业于南京工业大学,获材料学博士学位。2017年于澳大利亚University of Southern Queensland, Centre for Future Materials作访问学者。Construction and Building Materials、Cement and Concrete Composites、《硅酸盐通报》、《材料导报》等学术期刊审稿人,中国建筑学会建筑材料分会化学激发胶凝材料专业委员会委员。主要研究方向为高性能水泥基材料/建筑功能材料/固体废弃物综合利用。
引用本文:    
胡俊, 任建伟, 王爱国, 吴德义. 非线性梯度胞元分布蜂窝材料的冲击力学响应[J]. 材料导报, 2019, 33(24): 4066-4071.
HU Jun, REN Jianwei, WANG Aiguo, WU Deyi. Dynamic Responses of Cellular Materials with Nonlinear Graded Cell Distribution Subjected to Impact Loading. Materials Reports, 2019, 33(24): 4066-4071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110162  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4066
1 Qiao P, Yang M, Bobaru F. Journal of Aerospace Engineering, 2008, 21(4), 235.2 Zhang Q, Yang X, Li P, et al. Progress in Materials Science,2015,74,332.3 Chung J, Waas A M. International Journal of Impact Engineering, 2007,27,729.4 Zhao X, Gao Q, Wang L, et al. Materials and Design,2018,160,527.5 Wang A J, Mcdowell D L. International Journal of Mechanical Sciences,2003,45(11), 1799.6 Wang P, Wang X, Zheng Z, et al. Latin American Journal of Solid and Structures,2017,14(7), 1251.7 Wu Y, Tang L, Liu Z, et al. Journal of Materials Engineering and Performances,2017,26(8), 3892.8 Sarvestani H Y, Akbarzadeh A H, Mirbolghasemi A, et al. Materials and Design, 2018,160,179.9 Small G D, Ansell M P. Journal of Materials Science,1987,22,2717.10 Novak N, Hokamoto K, Vesenjak M, et al. International Journal of Impact Engineering, 2018,122,83.11 Zhang J, Zhao G P, Lu T J. Engineering Mechanics, 2016, 33(8),211(in Chinese).张健, 赵桂平, 卢天健. 工程力学,2016,33(8), 211.12 Cai Z Y, Ding Y Y, Wang S L, et al. Explosion and Shock Waves, 2017, 37 (3),396(in Chinese).蔡正宇, 丁圆圆, 王士龙, 等. 爆炸与冲击,2017,37(3),396.13 He Q, Ma D W, Zhang Z D, et al. Engineering Structure,2016,33(2),172(in Chinese).何强, 马大为, 张震东, 等. 工程力学,2016,33(2), 172.14 Gibson L J, Ashby M F. Cellular solids: Structure and properties, 2nd ed. Cambridge University Press, UK, 1997.15 Islam M A, Brown A D, Hazell P J, et al. International Journal of Impact Engineering, 2018,114,111.16 Khan M K, Baig T, Mirza S. Materials Science and Engineering A, 2012,539,135.17 Paul A, Ramamurty U. Materials Science and Engineering A,2000,281,1.
[1] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[2] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[3] 梁宁慧,杨鹏,刘新荣,钟杨,郭哲奇. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 288-294.
[4] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed