Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22060085-7    https://doi.org/10.11896/cldb.22060085
  无机非金属及其复合材料 |
聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能
周宇祥1, 施天宇1, 赵晨媛1, 尹海宏1,*, 宋长青1, 郁可2
1 南通大学信息科学技术学院,江苏 南通 226019
2 华东师范大学物理与电子科学学院,极化材料与器件教育部重点实验室,上海 200241
ZnS-Decorated CNTs as Backbone with Polyaniline Coating Layer to Boost the Performance Lithium-Sulfur Batteries
ZHOU Yuxiang1, SHI Tianyu1, ZHAO Chenyuan1, YIN Haihong1,*, SONG Changqing1, YU Ke2
1 School of Information Science and Technology, Nantong University, Nantong 226019, Jiangsu, China
2 Key Laboratory of Polar Materials and Devices, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
下载:  全 文 ( PDF ) ( 7728KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着石油等化石燃料的逐渐枯竭,人们对绿色能源和电动汽车的需求持续增长,可循环的电能储存系统也得到了快速发展。然而,传统的锂离子电池已接近理论极限,因而寻找开发下一代电池电极材料受到了极大的关注。锂硫电池因为具备出色的理论比容量和能量密度、环境友好、成本低廉等优点而备受关注。然而,锂硫电池中活性硫及其放电产物导电性差、可溶性多硫化物在电极间穿梭、体积膨胀等问题导致电池的反应动力学缓慢、容量迅速下降。为了解决这些问题,有必要对硫正极进行合理设计,研究表明引入碳纳米结构(如碳纳米管、碳纳米纤维、介孔碳、石墨烯等)作为骨架负载硫能提高锂硫电池的性能。这些碳骨架具有多层次的交叠多孔结构、大比表面积和高电子迁移率等优势,为离子提供迁移通道的同时能形成物理屏障限制多硫化物的迁移,进而抑制穿梭效应改善电池的循环稳定性。但是由于碳纳米结构的非极性特点,多硫化物与碳骨架之间的相互作用较弱,只能通过物理相互作用抑制多硫化物的穿梭。为了提高抑制效果,可以将极性材料(如金属氧化物、硫化物等)与碳纳米结构进行耦合,这样就兼具了极性材料和碳纳米结构的优点。极性材料与多硫化物的相互作用较强,同时碳纳米结构的高导电性和物理屏障作用亦得以保留,因而能大幅减缓穿梭效应,提高锂硫电池的循环稳定性和倍率性能。此外,多种导电聚合物,如聚吡咯(PPy)、聚噻吩(PTh)和聚苯胺(PANI)等,亦能作为包覆层或导电载体改善锂硫电池的循环性能和倍率性能。其中聚苯胺(PANI)具有导电性高、易合成、共形性好等特点,作为包覆层能有效地防止多硫化物向外扩散,提高电子的迁移率,从而保证电池的长期循环稳定性。   本工作制备了一种ZnS-CNTs/S@PANI正极材料来抑制上述缺陷,提高锂硫电池性能,该正极材料以ZnS修饰的CNTs为骨架来负载硫,再在外层包覆聚苯胺(PANI)导电聚合物制备而成。该正极材料中由碳纳米管构成的导电网络有利于电子的快速迁移,并能容纳循环过程中硫的体积膨胀;ZnS量子点的修饰在碳纳米管表面增加了大量极性位点,能够增强对多硫化物的吸附,进而抑制穿梭效应;外侧的聚苯胺作为极性导电包覆层有利于提高电极整体的导电性,增强对多硫化物的吸附,并且能够通过物理限制效应防止活性材料流失。因此该正极材料表现出良好的电池性能,其初始比容量在0.5 C时为952.33 mAh·g-1,经过150次循环后比容量为776.37 mAh·g-1,容量保持率为81.52%。其在2 C倍率下的放电容量为633.62 mAh·g-1,优于CNTs/S和ZnS-CNTs/S电极。该结果证明了ZnS-CNTs/S@PANI正极材料具备优异的锂硫电池性能,为了锂硫电池向实用化发展提供了一种正极制备方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宇祥
施天宇
赵晨媛
尹海宏
宋长青
郁可
关键词:  锂硫电池  硫化锌  正极  聚苯胺    
Abstract: Lithium-sulfur batteries (LSBs) have attracted increasing attention due to their excellent specific capacity and energy density. However, obstructions of polysulfide dissolution, the volume expansion, and the poor conductivity usually result in a significant capacity decrease and sluggish reaction kinetics during cycling. Herein, we fabricated a novel ZnS-CNTs/S@PANI cathode to suppress the aforementioned obstacles, in which the ZnS-decorated CNTs were used as backbone to support sulfur and a polyaniline (PANI) layer was then coated on them. The conductive CNT network permitted fast electron/ion transfer and meanwhile accommodated the volume expansion. The decorated ZnS quantum dots (QDs) provided abundant polar sites on CNT surface facilitating the chemisorption of polysulfides. The conductive PANI coating layer acted multiple roles as a conducting additive, an adsorbing agent, and a physical barrier, which inhibited the shuttle of polysulfides and bettered the kinetics. Therefore, the obtained ZnS-CNTs/S@PANI cathode provided a high reversible capacity of 952.33 mAh·g-1 at 0.5 C, and still maintained an excellent capacity of 776.37 mAh·g-1 even after 150 cycles. The same excellent rate performance of 633.62 mAh·g-1 was also obtained at 2 C. Therefore, this study provides a simple and low-cost method for the preparation of high-performance Li-S battery cathode materials.
Key words:  lithium-sulfur batteries    ZnS    cathode    polyaniline
发布日期:  2024-01-16
基金资助: 国家自然科学基金(11974110;61974041);江苏省“六大人才高峰”项目(XCL-052);江苏省高校青蓝工程项目
引用本文:    
周宇祥, 施天宇, 赵晨媛, 尹海宏, 宋长青, 郁可. 聚苯胺包覆的硫化锌-碳纳米管用作正极载体材料提高锂硫电池性能[J]. 材料导报, 2024, 38(1): 22060085-7.
ZHOU Yuxiang, SHI Tianyu, ZHAO Chenyuan, YIN Haihong, SONG Changqing, YU Ke. ZnS-Decorated CNTs as Backbone with Polyaniline Coating Layer to Boost the Performance Lithium-Sulfur Batteries. Materials Reports, 2024, 38(1): 22060085-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060085  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22060085
1 Wei Y, Yan Y, Zou Y, et al. Electrochimica Acta, 2019, 310, 45.
2 Berg E J, Trabesinger S. Journal of the Electrochemical Society, 2017, 165, A5001.
3 Li C, Liu R, Xiao Y, et al. Energy Storage Materials, 2021, 40, 439.
4 Tantis I, Bakandritsos A, Zaoralová D, et al. Advanced Functional Materials, 2021, 31, 2101326.
5 Jeong G, Kim Y U, Kim H, et al. Energy & Environmental Science, 2011, 4, 1986.
6 Tang T, Hou Y. Electrochemical Energy Reviews, 2018, 1, 403.
7 Nguyen Q H, Luu V T, Lim S N, et al. ACS Applied Materials & Interfaces, 2021, 13, 28036.
8 Evers S, Nazar L F. Accounts of Chemical Research, 2013, 46, 1135.
9 Cai W, Li J, Zhang Y, et al. Chemelectrochem, 2014, 1, 1662.
10 Liu X, Li Y, Xu X, et al. Journal of Energy Chemistry, 2021, 61, 104.
11 Qiu Y, Li W, Zhao W, et al. Nano Letters, 2014, 14, 4821.
12 Wang J, Ran R, Tade M O, et al. Journal of Power Sources, 2014, 254, 18.
13 Huang J Q, Zhang Q, Zhang S M, et al. Carbon, 2013, 58, 99.
14 Kim H, Lee J T, Yushin G. Journal of Power Sources, 2013, 226, 256.
15 Rao M, Geng X, Li X, et al. Journal of Power Sources, 2012, 212, 179.
16 Rao M, Song X, Cairns E J. Journal of Power Sources, 2012, 205, 474.
17 Xu T, Song J, Gordin M L, et al. ACS Applied Materials & Interfaces, 2013, 5, 11355.
18 See K A, Jun Y S, Gerbec J A, et al. ACS Applied Materials & Interfaces, 2014, 6, 10908.
19 Li N, Zheng M, Lu H, et al. Chemical Communications, 2012, 48, 4106.
20 Zhao M Q, Zhang Q, Huang J Q, et al. Nature Communications, 2014, 5, 3410.
21 Jayaprakash N, Shen J, Moganty S S, et al. Angewandte Chemie International Edition, 2011, 50, 5904.
22 Zhang K, Zhao Q, Tao Z, et al. Nano Research, 2013, 6, 38.
23 Li H, Wang J, Zhao Y, et al. Chemelectrochem, 2019, 6, 3454.
24 Ma T, Liu M, Huang T, et al. Journal of Power Sources, 2018, 398, 75.
25 Li G C, Li G R, Ye S H, et al. Advanced Energy Materials, 2012, 2, 1238.
26 Xiao L, Cao Y, Xiao J, et al. Advanced Materials, 2012, 24, 1176.
27 Wu F, Chen J, Li L, et al. The Journal of Physical Chemistry C, 2011, 115, 24411.
28 Sun Y, Wang S, Cheng H, et al. Electrochimica Acta, 2015, 158, 143.
29 Tang Z, Jiang J, Liu S, et al. Nanoscale Research Letters, 2017, 12, 617.
30 Zhou G, Zhao S, Wang T, et al. Nano Letters, 2020, 20, 1252.
31 Lin H, Zhang S, Zhang T, et al. Advanced Energy Materials, 2018, 8, 1801868.
32 Zhang J, You C, Zhang W, et al. Electrochimica Acta, 2017, 250, 159.
33 Yang K, Gao Q, Tan Y, et al. Chemistry :A European Journal, 2016, 22, 3239.
34 Xie Y, Zhao H, Cheng H, et al. Applied Energy, 2016, 175, 522.
35 Yan Y, Shi M, Wei Y, et al. Journal of Alloys and Compounds, 2018, 738, 16.
36 Gong Q, Gu S, Li J, et al. Chemnanomat, 2020, 6, 827.
37 Liang Y, Deng N, Ju J, et al. Electrochimica Acta, 2018, 281, 257.
38 Zhao Y, Tan R, Yang J, et al. Journal of Power Sources, 2017, 340, 160.
39 Li W, Zhang Q, Zheng G, et al. Nano Letters, 2013, 13, 5534.
40 Xiao Z, Yang Z, Li Z, et al. ACS Nano, 2019, 13, 3404.
[1] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[2] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[3] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[4] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[5] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[6] 陈守东, 查辰宇, 卢日环. 金属极薄带在锂离子电池中的应用与研究进展[J]. 材料导报, 2023, 37(23): 22070289-6.
[7] 何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
[8] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[9] 吴强, 张薇, 余创, 程时杰, 谢佳. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175-15.
[10] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[11] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[12] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[13] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[14] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[15] 魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed