Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22070163-13    https://doi.org/10.11896/cldb.22070163
  无机非金属及其复合材料 |
双离子电池中阴离子可逆体系设计与正极材料研究进展
帕提曼·阿不都1, 何一涛2,*, 白翔1, 伊尔夏提·地里夏提1, 罗新泽1, 何晓燕1, 闫秀玲1,*, 李海金2,*
1 伊犁师范大学化学与环境科学学院,污染物化学与环境治理重点实验室,新疆 伊宁 835000
2 安徽工业大学能源与环境学院,能源与动力工程系,安徽 马鞍山 243002
Design of Anion Reversible Systems and Research Progress of Cathode Materials in Dual-ion Batteries
PATIMAN Abudu1, HE Yitao2,*, BAI Xiang1, YIERXIATI Dilixiati1, LUO Xinze1, HE Xiaoyan1, YAN Xiuling1,*, LI Haijin2,*
1 Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Sciences, YiLi Normal University, Yining 835000, Xinjiang, China
2 School of Energy and Environment, Department of Energy and Power Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 21641KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双离子电池(DIBs)基于在充电/放电过程中将阳离子和阴离子分别储存在正极和负极的工作机制,具有工作电压高、成本低和安全性出色等优点,在高效储能方面比锂离子电池更受关注。本文系统全面地综述了DIBs的基本储能原理及阴离子可逆体系理论基础,并回顾了当前DIBs最新进展。以非水系和水系双离子电池为切入点,详细介绍了DIBs正极上阴离子可逆电对设计种类,以及石墨、有机和金属层状正极材料分类及目前的研究进展。此外,还提出了一些策略和展望,希望促进DIBs未来在基础研究和产业化上的进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
帕提曼·阿不都
何一涛
白翔
伊尔夏提·地里夏提
罗新泽
何晓燕
闫秀玲
李海金
关键词:  双离子电池  正极材料  阴离子可逆体系    
Abstract: Dual ion battery (DIBs) is based on the working mechanism of storing cations and anions at the positive and negative electrodes, respectively, during the charging/discharging process. It has the advantages of high operating voltage, low cost and excellent safety, and has attracted more attention than lithium ion battery in the aspect of efficient energy storage. In this review, the basic energy storage principle of DIBs and the theoretical basis of anionic reversible system are systematically reviewed, and the latest progress of DIBs is included. The design types of reversible anionic pairs on DIBs positive electrode, the classification of graphite, the research progress of organic or metal-based layered positive electrode materials are introduced in detail. In addition, some strategies and prospects are put forward to promote the further development of DIBs in basic research and industrialization in the future.
Key words:  dual-ion battery    cathode material    anion reversible system
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TM912  
基金资助: 国家自然科学基金青年科学基金(5220021063;21972065;21803002);新疆维吾尔自治区自然科学基金(青年项目)(2020D01C270);伊犁师范大学科研项目(自然科学类)(2021YSYB084);污染控制及定向功能化材料设计科研团队项目(CXZK2021002)
通讯作者:  *何一涛,安徽工业大学能源与环境学院能源与动力工程系资格教授,2021年于哈尔滨工业大学获得物理学博士学位。主要从事电化学原理、能源材料设计及新能源存储器件领域的研究工作。在Energy Storage Materials、Advanced Functional Materials、Nano Energy、Advanced Scienc等国际期刊上发表SCI/EI论文20余篇。heyitao@ahut.edu.cn
闫秀玲,伊犁师范大学化学与环境科学学院教授。2011年于山东大学获得物理化学博士学位,2012—2015年于山东大学材料科学与工程学院进行博士后研究。主要从事纳米电催化(多孔金属在电催化领域的应用研究)、环境碳材料技术(生物质多孔碳材料的性能研究)领域的应用研究工作。在Advanced Functional Materials、ChemistrySelect、Chemical Engineering Journal等国际期刊上发表SCI/EI论文30余篇。xlyan1212@163.com
李海金,安徽工业大学能源与环境学院教授、博士研究生导师,南京大学博士后,日本国立物质材料研究所访问学者。从事清洁能源、化学电源、储能技术等领域的应用研究。以第一作者在Materials Today、Nano Letter、Advanced Functional Materials、Advanced Science、Nanoscale等国际期刊上发表SCI/EI论文40余篇。lihaijin@ahut.edu.cn   
作者简介:  帕提曼·阿不都,伊犁师范大学化学与环境科学学院讲师,2015年于新疆大学化学化工学院获得理学学士学位,2018年于新疆大学应用化学研究所获得物理化学硕士学位。2020年9月入职伊犁师范大学后主要从事碳材料、先进电化学储能电源的设计及其在电化学检测领域的应用研究工作。
引用本文:    
帕提曼·阿不都, 何一涛, 白翔, 伊尔夏提·地里夏提, 罗新泽, 何晓燕, 闫秀玲, 李海金. 双离子电池中阴离子可逆体系设计与正极材料研究进展[J]. 材料导报, 2024, 38(2): 22070163-13.
PATIMAN Abudu, HE Yitao, BAI Xiang, YIERXIATI Dilixiati, LUO Xinze, HE Xiaoyan, YAN Xiuling, LI Haijin. Design of Anion Reversible Systems and Research Progress of Cathode Materials in Dual-ion Batteries. Materials Reports, 2024, 38(2): 22070163-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070163  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22070163
1 Wang M, Tang Y. Advanced Energy Materials, 2018, 8, 1703320.
2 He S, Wang S, Chen H, et al. Journal of Materials Chemistry A, 2020, 8, 2571.
3 Zhang X, Tang Y, Zhang F, et al. Advanced Energy Materials, 2016, 6, 1502588.
4 Zhang E, Cao W, Wang B, et al. Energy Storage Materials, 2018, 11, 91.
5 Yang K, Liu Q, Zheng Y, et al. Angewandte Chemie-International Edition, 2021, 60, 6326.
6 Han X, Xu G, Zhang Z, et al. Advanced Energy Materials, 2019, 9, 1804022.
7 Rodríguez P, Jian Z, Waldenmaier P, et al. ACS Energy Letters, 2016, 1, 719.
8 Zhang M, Pei Y, Liu W, et al. Nano Energy, 2021, 81, 105643.
9 Yu A, Pan Q, Zhang M, et al. Advanced Energy Materials, 2020, 30, 2001440.
10 Gong Z, Yang Y. Energy & Environmental Science, 2011, 4, 3223.
11 Rana J, Stan M, Kloepsch R, et al. Advanced Energy Materials, 2014, 4, 1300998.
12 Park H, Min K, Park K. ACS Applied Materials & Interfaces, 2022, 14, 5168.
13 Yang Y, Wang J, Liu S, et al. Chemical Engineering Journal, 2022, 435, 134746.
14 Pendashteh A, Orayech B, Suhard H, et al. Energy Storage Materials, 2022, 46, 417.
15 Haniu Y, Nara H, Ahn S, et al. Journal of Materials Chemistry A, 2021, 9, 27459.
16 Shahjalal M, Roy P, Shams T, et al. Energy, 2022, 241, 122881.
17 Piątek J, Afyon S, Budnyak T, et al. Advanced Energy Materials, 2021, 11, 2003456.
18 Yang C, Chen J, Ji X, et al. Nature, 2019, 569, 245.
19 Rothermel S, Meister P, Schmuelling G, et al. Energy & Environmental Science, 2014, 7, 3412.
20 Placke T, Fromm O, Lux S, et al. Journal of Electrochemical Society, 2012, 159, A1755.
21 Li W, Ning Q, Xi X, et al. Advanced Materials, 2019, 31, 1804766.
22 Zhang C, Ma W, Han C, et al. Energy & Environmental Science, 2021, 14, 462.
23 Rodríguez P, Zhang L, Wrogemann J, et al. Advanced Energy Materials, 2020, 10, 2001256.
24 Gupta T, Kim A, Phadke S, et al. Journal of Power Sources, 2016, 305, 22.
25 Li H, Kurihara T, Yang D, et al. Energy Storage Materials, 2021, 38, 454.
26 Zhang Y, An Y, Yin B, et al. Journal of Materials Chemistry A, 2019, 7, 11314.
27 Cai S, Chu X, Liu C, et al. Advanced Materials, 2021, 33, 2007470.
28 Endo M, Kim C, Nishimura K, et al. Carbon, 2000, 38, 183.
29 Liang H, Hou B, Li W, et al. Energy & Environmental Science, 2019, 12, 3575.
30 Li P, Kim H, Myung S, et al. Energy Storage Materials, 2021, 35, 550.
31 Martin C, Genovese M, Louli A, et al. Joule, 2020, 4, 1296.
32 Roohi H, Gildeh S F, Ghauri K, et al. Ionics, 2020, 26, 1963.
33 Zhang L, Zhu X, Hu S, et al. Dalton Transactions, 2019, 48, 7809.
34 Giri B, Saini T, Kumbhakar S, et al. Dalton Transactions, 2020, 49, 10772.
35 Zhang M, Song X, Ou X, et al. Energy Storage Materials, 2019, 16, 65.
36 Zhang H, Guo G, Adenusi H, et al. Materials Today, 2022, 53, 162.
37 Kumar S, Bhauriyal P, Pathak B. Journal of Physical Chemistry C, 2019, 123, 23863.
38 Shpigel N, Malchik F, Levi M, et al. Energy Storage Materials, 2020, 32, 1.
39 Minami K, Masese T, Yoshii K, et al. New Journal of Chemistry, 2021, 45, 4921.
40 Seel J, Dahn J. Journal of Electrochemical Society, 2000, 147, 892.
41 Chan C, Lee P, Xu Z, et al. Electrochimica Acta, 2018, 263, 34.
42 Wu J, Wang X, Liu Q, et al. Nature Communications, 2021, 12, 5746.
43 Wu L, Wang Z, Dai P, et al. Chemical Science, 2022, 13, 4058.
44 Wang D, Zhang J, Dong Y, et al. New Carbon Materials, 2021, 36, 435.
45 Zhou H, Liu Y, Ren M, et al. Inorganic Chemistry Frontiers, 2022, 9, 1920.
46 Ma C, Hu Z, Song N, et al. Rare Metals, 2021, 40, 837.
47 Jh A, Xla B, Xs C, et al. EnergyChem, 2019, 1, 100004.
48 Heckmann A, Fromm O, Rodehorst U, et al. Carbon, 2018, 131, 201.
49 Wei C, Gong D, Xie D, et al. ACS Energy Letters, 2021, 6, 4336.
50 Wu X, Xu Y, Zhang C, et al. Journal of American Chemistry Society, 2019, 141, 6338.
51 Chen G, Zhang F, Zhou Z, et al. Advanced Energy Materials, 2018, 8, 1801219.
52 Alvarez T, Castro L, Guzmán G, et al. ACS Appl Energy Materials, 2021, 4, 295.
53 Jiang H, Han X, Du X, et al. Advanced Materials, 2022, 34, 2108665.
54 Yang H, Qin T, Zhou X, et al. Journal of Energy Chemistry, 2022, 71, 392.
55 Ikhe A, Seo J, Park W, et al. Journal of Power Sources, 2021, 506, 230261.
56 Zhang L, Wang H, Zhang X, et al. Advanced Functionl Materials, 2021, 31, 2010958.
57 Li H, Li J, Chen Z, et al. ChemElectroChem, 2021, 8, 3512.
58 Abbas G, Sonia F, Zafar Z, et al. Carbon, 2022, 186, 612.
59 Wang S, Xiao X, Fu C, et al. Journal of Materials Chemistry A, 2018, 6, 4313.
60 Wang S, Tu J, Xiao J, et al. J. Energy Chem, 2019, 28, 144.
61 Wang S, Xiao X, Zhou Y, et al. Electrochimica Acta, 2018, 282, 946.
62 Huang Z, Hou Y, Wang T, et al. Nature Communications, 2021, 12, 3106.
63 Dong S, Li Z, Rodríguez P, et al. Nano Energy, 2017, 40, 233.
64 Warshawsky I. Journal of Electrochemical Society, 1980, 127, 1324.
65 Heckmann A, Thienenkamp J, Beltrop K, et al. Electrochimica Acta, 2018, 260, 514.
66 Li Y, Lu Y, Adelhelm P, et al. Chemical Society Reviews, 2019, 48, 4655.
67 Guo Q, Kim K, Li S, et al. ACS Energy Letters, 2021, 6, 459.
68 Wang X, Salari M, Jiang D, et al. Nature Reviews Materials, 2020, 5, 787.
69 Kim K, Tang L, Mirabedini P, et al. Advanced Functional Materials, 2022, 32, 2112709.
70 Tan H, Zhai D, Kang F, et al. Carbon, 2021, 178, 363.
71 Dühnen S, Nölle R, Wrogemann J, et al. Journal of Electrochemical Society, 2019, 166, A5474.
72 Wang L, Peng M, Chen J, et al. ACS Nano, 2022, 16, 2877.
73 Feng X, Wu X, Chen X, et al. Energy Storage Materials, 2021, 42, 454.
74 Zhang Z, Ni Y, Avdeev M, et al. Electrochimica Acta, 2021, 365, 137376.
75 Fan J, Zhang Z, Liu Y, et al. Chemical Communications, 2017, 53, 6891.
76 Balabajew M, Reinhardt H, Bock N, et al. Electrochimica Acta, 2016, 211, 679.
77 Meister P, Schmuelling G, Winter M, et al. Electrochemical Communications, 2016, 71, 52.
78 Kravchyk K, Bhauriyal P, Piveteau L, et al. Nature Communications, 2018, 9, 4469.
79 Bhauriyal P, Mahata A, Pathak B. Physical Chemistry Chemical Phy-sics, 2017, 19, 7980.
80 Xiang L, Ou X, Wang X, et al. Angewandte Chemie-International Edition, 2020, 59, 17924.
81 Wang H, Yoshio M. Chemical Communications, 2010, 46, 1544.
82 Huang Y, Liang Z, Wang H. Chemical Communications, 2020, 56, 10070.
83 Aladinli S, Bordet F, Ahlbrecht K, et al. Electrochimica Acta, 2017, 231, 468.
84 Mohandas K, Sanil N, Noel M, et al. Carbon, 2003, 41, 927.
85 Li X, Wang Y, Chen Z, et al. Angewandte Chemie-International Edition, 2022, 61, e202113576.
86 Yang C, Chen J, Ji X, et al. Nature, 2019, 569, 245.
87 Yang C, Suo L, Borodin O, et al. Proceedings of National Academy of Sciences, 2017, 114, 6197.
88 Zhang Z, Hu X, Zhou Y, et al. Journal of Materials Chemistry A, 2018, 6, 8244.
89 Guo Q, Kim K, Jiang H, et al. Advanced Functional Materials, 2020, 30, 2002825.
90 Obrezkov F, Shestakov A, Vasil’ev S, et al. Journal of Materials Che-mistry A, 2021, 9, 2864.
91 Obrezkov F, Somova A, Fedina E, et al. Energy Technology, 2021, 9, 2000772.
92 Speer M, Kolek M, Jassoy J, et al. Chemical Communications, 2015, 51, 15261.
93 Ge J, Yi X, Fan L, et al. Journal of Energy Chemistry, 2021, 57, 28.
94 Zhu J, Li Y, Yang B, et al. Small, 2018, 14, 1801836.
95 Zhan C, Zeng X, Ren X, et al. Journal of Energy Chemistry, 2020, 42, 180.
96 Li C, Lao B, Li Z, et al. Energy Storage Materials, 2020, 32, 159.
97 Latha M, Vatsala R. Journal of the Electrochemical Society, 2019, 167, 070501.
98 Zhang M, Zhong J, Kong W, et al. Energy & Environmental Science, 2021, 4, 413.
99 Bachman J, Kavian R, Graham D, et al. Nature Communications, 2015, 6, 7040.
100 Xu S, Dai H, Zhu S, et al. eScience, 2021, 1, 60.
101 Li C, Xue J, Huang A, et al. Electrochimica Acta, 2019, 297, 850.
102 Fan L, Liu Q, Xu Z, et al. ACS Energy Letters, 2017, 2, 1614.
103 Zhang M, Zhong J, Zhu J, et al. Journal of Electroanalytical Chemistry, 2022, 909, 116155.
104 Poul M, Olga F, Sergej R, et al. Electrochimica Acta, 2017, 228, 18.
105 Zhu H, Zhang F, Li J, et al. Small, 2018, 14, 1703951.
106 傅宇. 中国专利, CN202210628474. 5, 2022.
107 Zhang F, Ji B, Tong X, et al. Advanced Energy Materials, 2016, 3, 1600605.
108 Wang J, Tu J, Chang C, et al. Journal of Power Sources, 2021, 492, 229674.
109 Wang P, Chen H, Li N, et al. Energy Storage Materials, 2018, 13, 103.
110 Wang Y, Zhang Y, Duan Q, et al. Journal of Power Sources, 2020, 471, 228466.
111 Zhou Z, Li N, Yang Y, et al. Advanced Energy Materials, 2018, 8, 1801439.
112 Li X, Wang Z, Duan X, et al. Electrochimica Acta, 2020, 363, 137229.
[1] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[2] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[3] 崔春娟, 赵亚男, 刘跃, 武重洋, 张凯, 王妍, 魏剑. 花瓣状纳米硫和球状纳米硫的制备及性能[J]. 材料导报, 2023, 37(5): 21080095-11.
[4] 虞亚霖, 莫岩, 陈永, 李德. LiNO3-LiOH熔盐法制备单晶LiNi0.75Co0.10Mn0.15O2正极材料[J]. 材料导报, 2023, 37(4): 21050208-6.
[5] 何思瑶, 魏闯, 康鑫, 李素平. 锂辉石含量对煅烧钴酸锂正极材料用匣钵材料性能的影响[J]. 材料导报, 2023, 37(22): 22040351-6.
[6] 李燕, 张俊杰, 郭俊明. Ni-La双掺LiMn2O4截角八面体正极材料的制备及电化学性能[J]. 材料导报, 2023, 37(14): 21120089-8.
[7] 张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
[8] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[9] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[10] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[11] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[12] 李欢, 何妍妍, 周国伟. 普鲁士蓝及普鲁士蓝类化合物材料在钠离子电池中的研究进展[J]. 材料导报, 2021, 35(23): 23050-23056.
[13] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[14] 周建峰, 翟鑫华, 张盼盼, 何亚鹏, 董劲, 黄惠, 郭忠诚. 富锂锰基正极材料结构优化及晶面调控研究进展[J]. 材料导报, 2021, 35(11): 11057-11065.
[15] 田庆华, 邹艾玲, 童汇, 喻万景, 张佳峰, 郭学益. 废旧三元锂离子电池正极材料回收技术研究进展[J]. 材料导报, 2021, 35(1): 1011-1022.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed