Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 23020077-6    https://doi.org/10.11896/cldb.23020077
  金属与金属基复合材料 |
搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究
龙飞1,2, 刘瞿1,2, 朱艺星1,2, 周梦然1,2, 陈高强1,2, 史清宇1,2,*
1 清华大学机械工程系,清洁高效透平动力装备全国重点实验室,北京 100084
2 先进成形制造教育部重点实验室,北京 100084
Research on Regulating Corrosion Resistance of Mg-5Zn-0.6Zr Alloy by Friction Stir Processing
LONG Fei1,2, LIU Qu1,2, ZHU Yixing1,2, ZHOU Mengran1,2, CHEN Gaoqiang1,2, SHI Qingyu1,2,*
1 State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, China
下载:  全 文 ( PDF ) ( 20266KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种储量足、比强度和比模量高的轻质结构材料和功能材料,镁的应用前景十分广阔,然而镁的耐蚀性不佳严重限制了其应用范围,较大尺寸的沉淀相导致的电偶腐蚀是镁合金耐蚀性不佳的重要原因。本工作选取铸态Mg-5Zn-0.6Zr合金作为研究对象,对该合金进行了搅拌摩擦加工处理,并对搅拌摩擦加工前后合金的组织结构和电化学性能进行了检测分析。结果表明,搅拌摩擦加工处理后的Mg-5Zn-0.6Zr合金形成了较强的(0001)基面织构,且大部分区域位错密度较低,晶粒尺寸从66.4 μm细化到1.6 μm,沉淀相发生了一定程度的破碎和弥散分布,在3.5%(下文如无特别说明,均指质量分数)NaCl水溶液中开路电位下的腐蚀电流密度由38.3 μA/cm2降至17.0 μA/cm2,极化电阻由48.98 Ω·cm2提升至197.02 Ω·cm2。研究表明,搅拌摩擦加工可以有效提高镁合金的耐蚀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙飞
刘瞿
朱艺星
周梦然
陈高强
史清宇
关键词:  搅拌摩擦加工  镁合金  耐蚀性  动态再结晶    
Abstract: As a lightweight material with sufficient reserves, high specific strength and specific modulus, the application of magnesium is very promising. The poor corrosion resistance of magnesium seriously limits its application, and galvanic corrosion caused by larger precipitates is an important reason for the poor corrosion resistance of magnesium alloys. In this work, the as-cast Mg-5Zn-0.6Zr alloy was selected as the object of study, and this alloy was friction stir processed. The microstructure and electrochemical properties were examined and analyzed before and after friction stir processing (FSP). The results indicated that after processed by FSP, the Mg-5Zn-0.6Zr alloy exhibited a strong (0001) basal texture with low dislocation density in most regions. The grain size was refined from 66.4 μm to the order of 1.6 μm, and there was a certain level of fragmentation and dispersed distribution of the precipitates. In a 3.5%(% refers to the mass fraction, if not otherwise stated) NaCl aqueous solution, the corrosion current density decreased from 38.3 μA/cm2 to 17.0 μA/cm2 at open circuit potential. Moreover, the polarization resistance increased from 48.98 Ω·cm2 to 197.02 Ω·cm2.The study indicated that FSP could effectively improve the corrosion resistance of magnesium alloy.
Key words:  friction stir processing    magnesium alloy    corrosion resistance    dynamic recrystallization
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB304  
基金资助: 国家自然科学基金(52035005;52175334)
通讯作者:  *史清宇,清华大学机械工程系教授、博士研究生导师。1993年哈尔滨工业大学金属材料及工艺系本科毕业,1996年哈尔滨工业大学金属材料及工艺系硕士毕业,2000年清华大学机械工程系博士毕业。目前主要从事搅拌摩擦焊接与加工、焊接力学及模拟仿真等方面的研究工作。发表论文100余篇,包括Corrosion Science、Journal of Mage-nesium and Alloys、Scripta Materialia、Composites Part B、 EngineeringJournal of Alloys and Compounds等。shqy@tsinghua.edu.cn   
作者简介:  龙飞,2016年6月、2018年7月分别于江苏科技大学和哈尔滨工业大学获得工学学士学位和硕士学位。现为清华大学机械工程系博士研究生,在史清宇教授的指导下进行研究。目前主要研究领域为镁合金的搅拌摩擦加工。
引用本文:    
龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
LONG Fei, LIU Qu, ZHU Yixing, ZHOU Mengran, CHEN Gaoqiang, SHI Qingyu. Research on Regulating Corrosion Resistance of Mg-5Zn-0.6Zr Alloy by Friction Stir Processing. Materials Reports, 2024, 38(10): 23020077-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020077  或          http://www.mater-rep.com/CN/Y2024/V38/I10/23020077
1 Ding W J, Wu G H, Li Z Q, et al. Aerospace Shanghai, 2019, 52(10), 1(in Chinese).
丁文江, 吴国华, 李中权, 等. 上海航天, 2019, 36(2), 1.
2 Long F, Chen G Q, Zhou M R, et al. Journal of Magnesium and Alloys, 2023, 11, 1931.
3 Li H, Wen J B, He J G, et al. Transactions of Materials and Heat Treatment, 2019, 40(7), 1(in Chinese).
李欢, 文九巴, 贺俊光, 等. 材料热处理学报, 2019, 40(7), 1.
4 Chen G Q, Li H, Wang G Q, et al. International Journal of Machine Tools and Manufacture, 2018, 124, 12.
5 Xie T F, Xing L, Ke L M, et al. Hot Working Technology, 2008(7), 64(in Chinese).
谢腾飞, 邢丽, 柯黎明, 等. 热加工工艺, 2008(7), 64.
6 Sato J, Omori T, Oikawa K, et al. Science, 2006, 312, 90.
7 Song G L, Atrens A, Dargusch M, et al. Corrosion Science, 1998, 41(2), 249.
8 Song G L, Atrens A. Advanced Engineering Materials, 1999, 1(1), 11.
9 Song G L, Xu Z Q. Corrosion Science, 2012, 54, 97.
10 Song G L, Mishra R, Xu Z Q. Electrochemistry Communications, 2010, 12(8), 1009.
11 Ralston K D, Birbilis N. Corrosion, 2010, 66(7), 0750051.
12 Zeng R C, Chen J, Dietzel W, et al. Corrosion Science, 2009, 51, 1738.
13 Xu X X, Zhu S J, Wang Q, et al. Journal of Aeronautical Materials, 2019, 39(1), 9(in Chinese).
徐雪雪, 朱世杰, 王 青, 等. 航空材料学报, 2019, 39(1), 9
14 Shi X T, Zhu Y Y, Li G Q, et al. Journal of Aeronautical Materials, 2019, 39(1), 17(in Chinese).
师晓亭, 朱园园, 李国强, 等. 航空材料学报, 2019, 39(1), 17.
15 Ding Z Y, Cui L Y, Zeng R C. Surface Technology, 2019, 48(3), 1(in Chinese).
丁自友, 崔蓝月, 曾荣昌. 表面技术, 2019, 48(3), 1.
16 Zeng R C, Chen J, Zhang J. Materials Reports, 2008, 22(1), 107(in Chinese).
曾荣昌, 陈君, 张津. 材料导报, 2008, 22(1), 107.
17 Zeng R C, Cui L Y, Ke W. Acta Metallurgica Sinica, 2018, 54(9), 1215(in Chinese).
曾荣昌, 崔蓝月, 柯伟. 金属学报, 2018, 54(9), 1215.
18 Song D, Ma A B, Jiang J H, et al. Corrosion Science, 2011, 53(1), 362.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[3] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[4] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[5] 张娜娜, 李全安, 陈晓亚, 陈培军, 谭劲峰. 高性能镁合金轧制成形研究进展[J]. 材料导报, 2024, 38(2): 22080125-9.
[6] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[7] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[8] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[9] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[10] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[11] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[12] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[13] 李少鹏, 王德芳, 谢文玲, 李秀兰, 李轩. 一步法反应时间对AZ91镁合金表面超疏水涂层耐腐蚀性的影响[J]. 材料导报, 2023, 37(18): 22010063-6.
[14] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[15] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed