Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23030275-9    https://doi.org/10.11896/cldb.23030275
  高分子与聚合物基复合材料 |
不同摩擦配副对PEEK及CF/PEEK复合材料摩擦学性能的影响
谢金梦1,2, 逄显娟1,2,*, 赵若凡1, 刘亚婷1,2, 黄素玲1,2, 王帅1, 张永振1
1 河南科技大学高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023
2 河南科技大学化学化工学院,河南 洛阳 471023
Effects of Different Friction Pairs on the Friction Properties of PEEK and CF/PEEK Composites
XIE Jinmeng1,2, PANG Xianjuan1,2,*, ZHAO Ruofan1, LIU Yating1,2, HUANG Suling1,2, WANG Shuai1, ZHANG Yongzhen1
1 National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 39547KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了选择与PEEK及其CF改性复合材料更合适的配副材料以适应苛刻的干摩擦工况,本工作选用PEEK、CF/PEEK复合材料为研究对象,利用UMT-2型多功能摩擦磨损试验机在不同速度、载荷下对PEEK、CF/PEEK复合材料与Al2O3球、GCr15球、Si3N4球三种不同对磨球所组成的摩擦副进行干摩擦试验。结果表明:CF填充改性PEEK基复合材料,提高了复合材料的摩擦学性能。研究速度、载荷对其摩擦学性能的影响发现,三种对磨球所组成的摩擦副在固定载荷高速时或者固定速度重载时仍保持良好的摩擦磨损性能。三种对磨球中,GCr15轴承钢球与PEEK、CF/PEEK组成的摩擦副摩擦系数最大,磨损率最高;Si3N4陶瓷球的摩擦副摩擦系数最小,磨损率最低。当GCr15-CF/PEEK摩擦副在50 N、400 r/min高速时,摩擦系数为0.275,在90 N、300 r/min重载下,摩擦系数为0.254;当Si3N4-CF/PEEK摩擦副在50 N、400 r/min高速时,摩擦系数为0.265,在90 N、300 r/min重载下,摩擦系数为0.231。GCr15-CF/PEEK摩擦副盘试样在高速高载的苛刻工况下发生了严重的磨粒磨损和黏着磨损,而Si3N4-CF/PEEK摩擦副盘试样在高速高载的苛刻工况下主要是磨粒磨损和轻微的黏着磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢金梦
逄显娟
赵若凡
刘亚婷
黄素玲
王帅
张永振
关键词:  聚醚醚酮  复合材料  Al2O3陶瓷球  GCr15轴承钢球  Si3N4陶瓷球  干摩擦    
Abstract: In order to select the matching materials more suitable for PEEK and CF modified composite materials to adapt to harsh dry friction conditions, this paper selected PEEK and CF/PEEK composite materials as the research object. The dry friction tests of PEEK, CF/PEEK composite and Al2O3 ball, GCr15 ball and Si3N4 ball are carried out by filling modified PEEK matrix composites improved the tribological properties of the composites. By studying the effects of speed and load on the tribological properties, it is found that the friction pairs composed of three kinds of grinding balls still maintain good tribological and wear properties under fixed load and high speed or fixed speed and heavy load. The friction coefficient and wear rate of GCr15 bearing steel ball with PEEK and CF/PEEK are the highest. Si3N4 ceramic ball friction pair has the lowest friction coefficient and the lowest wear rate. The friction coefficient of GCr15-CF/PEEK friction pair is 0.275 at 50 N and 400 r/min, and 0.254 at 0 N and 300 r/min under heavy load. The friction coefficient of Si3N4-CF/PEEK friction pair is 0.265 at high speed of 50 N and 400 r/min, and 0.231 at heavy load of 90 N and 300 r/min. The samples of GCr15-CF/PEEK friction secondary disk have severe abrasive wear and adhesive wear under the harsh working conditions of high speed and high load, while the samples of Si3N4-CF/PEEK friction secondary disk mainly have abrasive wear and slight adhesive wear.
Key words:  PEEK    composites    Al2O3 ceramic    GCr15 bearing steel    Si3N4 ceramic    dry friction
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB332  
基金资助: 国家自然科学基金(92266205; 52105181);宁波市重点研发计划暨“揭榜挂帅”(2022Z050);河南科技大学大学生研究训练计划项目(2022183)
通讯作者:  *逄显娟,硕士研究生导师,2010 年7月毕业于中国科学院兰州化学物理研究所物理化学专业,获理学博士学位。现为河南科技大学材料科学与工程学院副教授、河南科技大学青年学术带头人。长期从事材料摩擦和表面工程方面的科学研究与教学工作,在Wear、Surface Coatings and Technology、Surface and Interface、Surface an Interface Analysis、《摩擦学学报》等国内外重要期刊发表论文20余篇。xjpang2001@haust.edu.cn   
作者简介:  谢金梦,2021年7月于河南科技大学获得工学学士学位,并于9月进入河南科技大学攻读硕士学位,目前主要研究领域为特种工程塑料PEEK的填充改性制备及摩擦学性能。
引用本文:    
谢金梦, 逄显娟, 赵若凡, 刘亚婷, 黄素玲, 王帅, 张永振. 不同摩擦配副对PEEK及CF/PEEK复合材料摩擦学性能的影响[J]. 材料导报, 2024, 38(16): 23030275-9.
XIE Jinmeng, PANG Xianjuan, ZHAO Ruofan, LIU Yating, HUANG Suling, WANG Shuai, ZHANG Yongzhen. Effects of Different Friction Pairs on the Friction Properties of PEEK and CF/PEEK Composites. Materials Reports, 2024, 38(16): 23030275-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030275  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23030275
1 Ramaswamy K, Modi V, Rao P S, et al. Applied Science and Manufacturing, 2023, 165, 107359.
2 Lei M, Hamel C M, Chen K, et al. Journal of the Mechanics and Physics of Solids, 2021, 148, 104271.
3 Pan Z, Yang C, Huang S, et al. International Journal of Mechanical Sciences, 2022, 235, 107740.
4 Gu X, Sun X, Sun Y, et al. Frontiers in Bioengineering and Biotechnology, 2021, 8, 631616.
5 Cheng B, Duan H, Chen Q, et al. Applied Surface Science, 2021, 566, 150668.
6 Koike H, Yamaguchi G, Mizobe K, et al. In:2nd International Conference on Composite Material, Polymer Science and Engineering (CMPSE2018). Tokyo, Japan, 2018, 264, pp. 01004
7 Almajid A, Friedrich K, Floeck J, et al. Applied Composite Materials, 2011, 18(3), 211
8 Lin L, Schlarb A K. Tribology International, 2019, 137, 173.
9 Guo L, Pei X, Zhao F, et al. Tribology International, 2020, 151, 106456.
10 Li Y, Xu N, Lyu H, et al. Composites Science and Technology, 2023, 232, 109851.
11 Yang Huarui, Wang Yan. Engineering Plastics Application, 2016, 44(10), 27 (in Chinese).
杨华锐, 汪艳. 工程塑料应用, 2016, 44(10), 27.
12 Chen B, Wang J, Yan F. Tribology International, 2012, 52, 170.
13 Wan Lei, Liu Libin, Ma Yue, et al. Bearing, 2020(5), 22 (in Chinese).
万磊, 刘丽斌, 马越, 等. 轴承, 2020(5), 22.
14 Cheng W, Sheng W, Hai W, et al. Materials Science, 2021, 27(2), 148.
15 Yin F, Ji H, Nie S. Journal of Engineering Tribology, 2019, 233(11), 1729.
16 Díez-Pascual A M, Naffakh M, Gómez M A, et al. Carbon, 2009, 47(13), 3079.
17 Li Enzhong, Guo Weiling, Wang Haidou, et al. Journal of Materials Engineering, 2013(1), 91(in Chinese).
李恩重, 郭伟玲, 王海斗, 等. 材料工程, 2013(1), 91.
18 Coulson M, Dantras E, Olivier P, et al. Journal of Applied Polymer Science, 2019, 136(38), 47975.
19 Yao C, Qi Z, Chen W, et al. Polymer Composites, 2021, 42(5), 2574.
20 Laux K A, Jean-Fulcrand A, Sue H J, et al. Polymer, 2016, 103, 397.
21 Liu N, Wang J, Chen B, et al. Tribology International, 2013, 61, 205.
22 Li J, Zhang L Q. Polymer Composites, 2010, 31(8), 1315.
23 Xie G Y, Sui G X, Yang R. Composites Science and technology, 2011, 71(6), 828.
24 Yue Shiwei, Pang Xianjuan, Niu Yixu, et al. Materials Reports, 2022, 36(16), 255(in Chinese).
岳世伟, 逄显娟, 牛一旭, 等. 材料导报, 2022, 36(16), 255.
25 Gates R S, Hsu S M. Tribology Letters, 2004, 17(3). 399.
26 Tang Q, Chen J, Liu L. Wear, 2010, 269(7-8), 541.
27 Yin F, Ji H, Nie S. Journal of Engineering Tribology, 2019, 233(11), 1729.
28 Qi Yuan, Gong Jun, Yang Dongya, et al. Materials Reports, 2019, 33(10), 6 (in Chinese).
祁渊, 龚俊, 杨东亚, 等. 材料导报, 2019, 33(10), 6.
29 Lyu H, Jiang N, Li Y, et al. Composites Science and Technology, 2021, 210, 108831.
30 Zheng B, Gao X, Li M, et al. Polymers, 2019, 11(6), 966.
31 Lin L, Schlarb A K. Tribology International, 2016, 101, 218.
32 Wang Z, Gao D. Materials & Design, 2013, 51, 983.
33 Zhang G, Chang L, Schlarb A K. Composites Science and Technology, 2009, 69(7-8), 1029.
34 Wang A, Yan S, Lin B, et al. Friction, 2017, 5, 414.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed