Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23100020-7    https://doi.org/10.11896/cldb.23100020
  金属与金属基复合材料 |
玻璃微探针电沉积的微结构制造路径规划
徐海黎1,†, 杨雅雯1,†, 邢强1,*, 陈妍1, 廖晓波2, 张小萍1, 庄健3
1 南通大学机械工程学院,江苏 南通 226019
2 西南科技大学制造过程测试技术教育部重点实验室,四川 绵阳 621010
3 西安交通大学机械工程学院,西安 710049
Microstructure Fabrication Path Planning for Glass Microprobe Electrodeposition
XU Haili1,†, YANG Yawen1,†, XING Qiang1,*, CHEN Yan1, LIAO Xiaobo2, ZHANG Xiaoping1, ZHUANG Jian3
1 School of Mechanical Engineering, Nantong University, Nantong 226019, Jiangsu, China
2 Key Laboratory of Testing Technology for Manufacturing Process, Minsitry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
3 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 19145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了实现半月形液滴限制电化学沉积(Meniscus confined electrodeposition,MCED)在二维平面的快速稳定生长,提出了自适应微跳跃分区沉积(Adaptive micro-jump partitioned deposition,AMJPD)方法。该方法利用扫描电化学池显微镜 (Scanning electrochemical cell microscopy,SECCM)获取沉积二维平面方程,结合预沉积图像的分区扫描沉积轨迹生成基于该平面的三维沉积路径,通过提出的自适应微跳跃沉积模式,合理规避了平面生长沉积时遇到的阻碍,实现了在微米尺度上快速可控的平面制造加工。实验结果表明,AMJPD方法可进行多线段和平面图形的沉积绘制,可实现线宽6 μm、长宽比17∶1微线条的稳定制造。因此,所提出的AMJPD方法可应用于各类精密金属微结构和微部件的制造,未来将在精密器件制造、生命医学传感等相关领域得到广泛应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐海黎
杨雅雯
邢强
陈妍
廖晓波
张小萍
庄健
关键词:  半月形液滴限制电化学沉积  微跳跃沉积模式  分区扫描  自适应平面  增材制造    
Abstract: In order to achieve rapid and stable planar growth of meniscus confined electrodeposition (MCED) in a two-dimensional planar, an adaptive micro-jump partitioned deposition (AMJPD) method is proposed. This method utilizes scanning electrochemical cell microscopy (SECCM) to obtain the equations of the deposition plane, and combines it with the partitioned scanned deposition path from pre-deposited images to gene-rate a three-dimensional deposition path based on this plane. By introducing the proposed adaptive micro-jump deposition mode, obstacles encountered during planar growth deposition are effectively circumvented, enabling rapid and controllable planar manufacturing at the microscale. Experimental results show that the AMJPD method can be used for the deposition drawing of multiple line segments and planar patterns, achieving stable fabrication of micro lines with a width of 6 μm and an aspect ratio of 17∶1. Therefore, the AMJPD method proposed can be applied to the fabrication of various precision metal microstructures and micro-components, and should be widely used in the future in precision device fabrication, life medicine sensing and other related fields.
Key words:  meniscus confined electrodeposition    micro-jump deposition mode    partition scanning    adaptive planes    additive manufacturing
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TG156  
基金资助: 国家自然科学基金面上项目(52175515);南通市科技项目(JC2021034)
通讯作者:  *邢强,南通大学副教授,主要研究方向为仿生视觉感知与智能系统研究。meexq@ntu.edu.cn   
作者简介:  徐海黎,南通大学机械工程学院教授、硕士研究生导师。目前主要从事机械系统的智能控制与信息处理等方面的研究。
杨雅雯,现为南通大学机械工程学院硕士研究生。目前主要从事机械系统的智能控制与信息处理等方面的研究。共同第一作者
引用本文:    
徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
XU Haili, YANG Yawen, XING Qiang, CHEN Yan, LIAO Xiaobo, ZHANG Xiaoping, ZHUANG Jian. Microstructure Fabrication Path Planning for Glass Microprobe Electrodeposition. Materials Reports, 2025, 39(5): 23100020-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100020  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23100020
1 Hu J, Yu M F. Science, 2010, 329(5989), 313.
2 Liao X B, Zhuang J, Deng Y L, et al. Journal of Mechanical Engineering, 2021, 57(5), 148 (in Chinese).
廖晓波, 庄健, 邓亚楼, 等. 机械工程学报, 2021, 57(5), 148.
3 Ming P M, Li X C, Zhang X M, et al. Scientia Sinica Technologica, 2018, 48(4), 347 (in Chinese).
明平美, 李欣潮, 张新民, 等. 中国科学:技术科学, 2018, 48(4), 347.
4 Hu J. Interfacial physics in meniscus-confined electrodeposition and its applications for fabricating electronic structures. Ph. D. Thesis, University of Illinois at Urbana-Champaign, USA, 2011.
5 Mckelvey K, O’connell M A, Unwin P R. Chemical Communications, 2013, 49(29), 2986.
6 Seol S K, Kim D, Lee S, et al. Small, 2015, 11(32), 3896.
7 Liao X, Zhuang J, Deng Y, et al. AIP Advances, 2020, 10(4), 045118.
8 Zhuang J, Liao X, Deng Y, et al. Micron, 2019, 126, 102738.
9 Liao X, Zhuang J, Yang J, et al. Advanced Engineering Materials, 2021, 4(4), 3502.
10 Wang Y, Xiong X, Ju B F, et al. International Journal of Machine Tools & Manufacture, DOI:10.1016/J.IJMACHTOOLS.2022.103850.
11 Yang J L. Study on stability control method of meniscus confined electrodeposition. Master’s Thesis, Southwest University of Science and Technology, China, 2022 (in Chinese).
杨九林. 微液滴限制电化学沉积稳定性控制方法研究. 硕士学位论文, 西南科技大学, 2022.
12 Hasan M, Zhao J, Jiang Z. Journal of Manufacturing Processes, 2017, 29, 343.
13 Macdonald E, Wicker R. Science, 2016, 353(6307), 1512.
14 Exner H, Horn M, Streek A, et al. Virtual & Physical Prototyping, 2008, 3(1), 3.
15 Vaezi M, Seitz H, Yang S. International Journal of Advanced Manufacturing Technology, 2013, 67(5-8), 1957.
16 Behroozfar A, Daryadel S, Morsali S R, et al. Advanced Materials, 2018, 30(4), 1705107.
17 Daryadel S, Behroozfar A, Minary-jolandan M. Advanced Engineering Materials, DOI:10.1002/adem.201800946.
18 Lei Y, Gao F, Guo J, et al. Integrated Ferroelectrics, 2018, 190(1), 164.
19 Williams C G, Edwards M A, Colley A L, et al. Analytical Chemistry, 2009, 81(7), 2486.
20 Neil E, Mathias S, Alexander W C, et al. Analytical Chemistry, 2010, 82(22), 9141.
21 Tao B, Unwin P R, Bentley C L. The Journal of Physical Chemistry C, 2020, 124(1), 789.
22 Takahashi Y, Kumatani A, Munakata H, et al. Nature Communications, 2014, 5(1), 5450.
23 Patel A N, Mckelvey K, Unwin P R. Journal of the American Chemical Society, 2012, 134(50), 20246.
24 Zhang P, Aydemir N, Alkaisi M M, et al. ACS Applied Materials & Interfaces, 2018, 10(14), 11888.
25 Guo R F, Zhuang J, Yu D H. Journal of Xi’an Jiaotong University, 2016(7), 83 (in Chinese).
郭仁飞, 庄健, 于德弘. 西安交通大学学报, 2016(7), 83.
26 Li Y X. Research on optimization algorithm of fused deposition 3D printing slice. Master’s Thesis, Harbin University of Science and Technology, China, 2021 (in Chinese).
李云旭. 熔融沉积式3D打印切片优化算法研究. 硕士学位论文, 哈尔滨理工大学, 2021.
27 Han J, Wang D P, Xia L. Journal of Hefei University of Technology (Natural Science), 2020, 43(1), 1 (in Chinese).
韩江, 王德鹏, 夏链, 等. 合肥工业大学学报(自然科学版), 2020, 43(1), 1.
28 Thompson B, Yoon H S. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(9), 1555.
29 Liu A H. The study of the software for screwthread processing on general nc lathe and interpolation algorithm based on PC. Master’s Thesis, Guangxi University, China, 2003 (in Chinese).
刘爱华. 基于PC机的普通数控车床螺纹加工软件及插补算法的研究. 硕士学位论文, 广西大学, 2003.
30 Liu R. Terrain travelers ability analysis of quadruped robot based on terrain features and leader teaching and learning. Master’s Thesis, Shandong University, China, 2018 (in Chinese).
刘蕊. 基于地形特征与领航员示教学习的四足机器人地形可通过性分析. 硕士学位论文, 山东大学, 2018.
31 Zhou S, Kang F, Li W, et al. International Journal of Agricultural and Biological Engineering, 2020, 13(1), 198.
32 Li W J, Mang D G, Tang H J, et al. Modular Machine Tool & Automatic Manufacturing Technique, 2017(5), 4 (in Chinese).
李嘉维, 马殿光, 唐厚君, 等. 组合机床与自动化加工技术, 2017(5), 4.
33 Zhang X, Yuan L, Lei Y, et al. Applied Materials Today, 2021, 24, 101138.
34 Liao X B, Zhuang J, Cheng L, et al. Optics and Precision Engineering, 2021, 29(10), 2432 (in Chinese).
廖晓波, 庄健, 程磊, 等. 光学精密工程, 2021, 29(10), 2432.
[1] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[4] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[5] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[6] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[7] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[8] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[9] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[10] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[11] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[12] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[13] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[14] 曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
[15] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed