Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 41-46    https://doi.org/10.11896/j.issn.1005-023X.2017.04.010
  材料研究 |
Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*
王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰
中国地质大学(北京) 工程技术学院, 北京 100083
Effects of the Counter Pair Materials of Si3N4 and 52100 Steel on
Dry Sliding Tribological Behavior of CrN Thin Film
WANG Shuqing, WANG Chengbiao, ZHU Lina, YUE Wen,
FU Zhiqiang, KANG Jiajie
College of engineering and technology, China University of Geosciences Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 2329KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用阴极电弧离子镀技术在316L不锈钢基体上制备了CrN薄膜。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪对CrN薄膜的形貌、成分和力学性能进行了表征。为了研究Si3N4和52100钢对磨副材料对CrN薄膜和316L不锈钢干摩擦行为的影响,在2 N、5 N、8 N三种载荷下,将CrN薄膜和316L不锈钢基体与Si3N4陶瓷球和52100钢球分别进行了往复式滑动干摩擦实验。采用扫描电子显微镜观察了磨痕的微观形貌,并对CrN薄膜和316L不锈钢基体的磨损机制进行了分析。结果表明:CrN薄膜表面平整,缺陷较少;CrN薄膜的纳米硬度约为28 GPa,弹性模量约为350 GPa;与Si3N4陶瓷球相比,CrN薄膜与52100钢球摩擦时摩擦因数相对较小(保持在0.7左右)且更加稳定;316L不锈钢的摩擦因数远大于CrN薄膜且波动较大;对磨球为Si3N4陶瓷球时,CrN薄膜的主要磨损机制为磨粒磨损,伴有少量的氧化和黏着磨损,316L不锈钢的磨损机制主要为磨粒磨损和塑性变形,伴有少量的氧化和黏着磨损;对磨球为52100钢球时,CrN薄膜的主要磨损机制为黏着磨损,伴有少量的氧化,316L不锈钢的磨损机制主要为黏着磨损,伴有少量的氧化和磨粒磨损。CrN薄膜与两种对磨球的磨损量均小于316L不锈钢基体的磨损量,说明CrN薄膜有效提高了基体的耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王淑庆
王成彪
朱丽娜
岳文
付志强
康嘉杰
关键词:  CrN薄膜  组织结构  摩擦学性能  力学性能    
Abstract: CrN thin films were deposited on 316L stainless steel substrate by cathodic arc ion plating technique. The topography, composition and mechanical properties of CrN thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nano indentation. In order to study the effects of the counter pair materials of Si3N4 and 52100 steel on the dry sliding friction behavior of CrN thin film and 316L stainless steel, the reciprocating sliding friction wear test on CrN thin film and 316L stainless steel against Si3N4 ceramic balls and 52100 balls were carried out under three kinds of loads (2 N, 5 N and 8 N). The morphologies of wear scars were observed by using scanning electron microscope, and the sliding wear mechanisms of CrN film and 316L stainless steel were discussed. The results showed that the surface of CrN thin film was smooth, and the defect was less. The nano hardness and the elastic modulus of the CrN thin film were about 28 GPa and 350 GPa, respectively. Compared with the Si3N4 ceramic ball, the friction coefficient of the CrN film against the 52100 steel ball was relatively small (about 0.7) and more stable. The friction coefficient of 316L stainless steel was much larger than that of CrN film. The wear mechanisms of CrN films against Si3N4 ceramic ball was mainly abrasive wear, and against 52100 steel ball was delamination and abrasive wear of the composite. The wear mechanisms of 316L stainless steel were abrasive wear and plastic deformation of the composite. When sliding against Si3N4 ceramic ball, the wear mechanisms of CrN films was mainly abrasive particle wear, accompanied by a small amount of oxidation and adhesion, and the wear mechanisms of 316L stainless was mainly abrasive wear and plastic deformation, accompanied by a small amount of oxidation and adhesion. When sliding against 52100 steel ball, the wear mechanisms of CrN films was mainly adhesive wear, accompanied by a small amount of oxidation, and the wear mechanisms of 316L stainless was mainly adhesive wear, accompanied by a small amount of oxidation and grinding particle abrasion. The wear of CrN thin films with two kinds of wear resistance ball were less than 316L stainless steel matrix wear, indicating that CrN film effectively improve the wear resistance of the matrix.
Key words:  CrN thin film    microstructure    tribological properties    mechanical properties
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TG115  
基金资助: *北京市自然科学基金青年项目(3164049);国家自然科学基金航天先进制造技术研究联合基金培育项目(U1537108);中央高校基本科研业务费专项资金资助项目(2652015070;2652015308)
通讯作者:  朱丽娜:通讯作者,女,1984年生,讲师,博士,研究方向为摩擦学与表面工程 Tel:(010)82321981 E-mail:zhulina@cugb.edu.cn   
作者简介:  王淑庆:女,1991 年生,硕士研究生,研究方向为耐磨薄膜制备技术与摩擦学
引用本文:    
王淑庆, 王成彪, 朱丽娜, 岳文, 付志强, 康嘉杰. Si3N4和52100钢对磨副材料对CrN薄膜干摩擦学行为的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 41-46.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.010  或          https://www.mater-rep.com/CN/Y2017/V31/I4/41
1 Pwtrogalli C, Montesano L, Gelfi M, et al. Tribological and corrosion behavior of CrN coatings: Roles of substrate and deposition defects[J]. Surf Coat Technol,2014,258:878.
2 Chen Tao, et al. CrN thin film for surface coating of engine piston ring[J].China Surf Eng,2010,23(3):102(in Chinese).
陈涛,等. 用于发动机活塞环表面涂层的 CrN 薄膜[J]. 中国表面工程,2010,23(3):102.
3 Liu Aihua. High temperature friction and wear characteristics and mechanism of PVD nitride coating[D]. Jinan: Shandong University,2012(in Chinese).
刘爱华. PVD氮化物涂层的高温摩擦磨损特性及机理研究 [D]. 济南:山东大学,2012.
4 Barshilia H C, Selvakumar N, Deepthi B, et al. A comparative stduy of reactive direct current magnetron sputtered AlCrN and CrN coatings[J]. Surf Coat Technol,2006,201(6):2193.
5 Polcara T, Kubartb T, Nova′k R, et al. Comparison of tribological behaviour of TiN, TiCN and CrN at elevated temperatures[J]. Surf Coat Technol,2005,193(1):192.
6 Chim Y C, Ding X Z, Zeng X T, et al. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating catho-de arc[J]. Thin Solid Films,2009,517(17):4845.
7 Ren Yuan. Research on the friction and wear properties of CrN and AlCrN coatings on the physical vapor deposition[D]. Chengdu: Southwest Jiao Tong University,2011(in Chinese).
任元. 物理气相沉积CrN和AlCrN涂层转动微动摩擦磨损性能研究[D]. 成都: 西南交通大学,2011.
8 Guo Zhenwen, Zhang Wenquan, Liu Xuefeng, et al. Friction and wear characteristics of 316L stainless steel /Y-PSZ composites[J]. J University of Science and Technology Beijing,2008,30(7):740(in Chinese).
郭振文, 张文泉, 刘雪峰, 等. 316L不锈钢/Y-PSZ复合材料摩擦磨损特性[J]. 北京科技大学学报,2008,30(7):740.
9 Li Gan, Shen Mingxue, Meng Xiangkai, et al. 316L stainless steel groove type surface micro textures of reducing friction characteristics of experimental study[J].J Funct Mater,2015,46(2):02033(in Chinese).
历淦, 沈明学, 孟祥铠, 等. 316L不锈钢沟槽型表面微织构减摩特性实验研究[J].功能材料,2015,46(2):02033.
10 Xie Hongmei, Nie Zhaoyin. A comparative study on the environment of TiN and CrN[J]. New Technol New Process,2010(6):63(in Chinese).
谢红梅, 聂朝胤. TiN, CrN的环境摩擦磨损对比研究[J]. 新技术新工艺,2010(6):63
11 Drory Michael D, Evans Ryan D. Deposition and characteristics of chromium thin film coatings on precision balls for tribological applications[J]. Surf Coat Technol,2011,206(7):1983.
12 Mo J L, Zhu M H. Sliding tribological behaviors of PVD CrN and AlCrN coatings against Si3N4 ceramic and pure titanium[J]. Wear,2009,267(5):874.
13 Zhou F, Chen K M, Wang M L, et al. Friction and wear properties of CrN coatings sliding against Si3N4 balls in water and air[J]. Wear,2008,265(7-8):1029.
14 Shan Lei, Wang Y X, Li J L, et al. Improving tribological perfor-mance of CrN coatings in seawater by structure design[J]. Tribology Int,2015,82:78.
15 Zhou Fei, Wang Yuan, Liu F, et al. Friction and wear properties of duplex MAO/CrN coatings sliding against Si3N4 ceramic balls in air, water and oil [J]. Wear,2009,267(9):1581.
16 Yu Lihua, Yuan Caiyun, Xu Junhua. Microstructure and properties of NbSiN composite films deposited by magnetron sputtering[J]. Mater Eng,2013(7):35(in Chinese).
喻利花, 苑彩云, 许俊华. 磁控溅射NbSiN 复合膜的微结构和性能[J].材料工程,2013(7):35
17 Li Yueqiao, Li Weizhou, Liang Tianquan, et al. The initial oxidation morphology, structure and reaction mechanism of arc ion plating AlCrN coating layer[J]. Mater Protection,2010,43(12):25(in Chinese).
李月巧, 李伟洲, 梁天权, 等. 电弧离子镀 AlCrN 沉积层初期氧化形貌、组构及反应机制[J]. 材料保护,2010,43(12):25.
18 Kong Dejun, Fu Guizhong, Wang Wenchang, et al. High temperature friction and wear behavior of AlCrN coatings prepared by cathodic arc ion plating[J].J Chin Vacuum Sci Technol,2014,34(7):700(in Chinese).
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed