Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 36-40    https://doi.org/10.11896/j.issn.1005-023X.2017.04.009
  材料研究 |
粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*
李苗苗, 陈平, 王辉, 李建超
北京科技大学机械工程学院, 北京 100083
Wear Resistance of Fly Ash Cenospheres/Epoxy Resin Composite Coating
LI Miaomiao, CHEN Ping, WANG Hui, LI Jianchao
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083
下载:  全 文 ( PDF ) ( 2325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 制备了粉煤灰微珠/环氧树脂复合材料涂层,并利用JM-V型磨耗仪对涂层材料进行了磨损试验,研究了粉煤灰微珠含量、微珠粒径以及试验负载和速度对复合涂层耐磨性能的影响。结果表明,随粉煤灰微珠含量的增加,涂层的耐磨性呈先增加后下降的趋势,当填充的微珠质量分数为15%时,复合材料涂层的耐磨性最佳。随微珠粒径的增大,微珠在磨损过程中更加容易破碎,导致复合材料涂层的耐磨性随之下降。对比不同载荷和速度下复合材料涂层的磨损试验结果发现,随负载的增加,复合材料涂层的耐磨性降低;加快试验速度,涂层材料的磨损量也随之变大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李苗苗
陈平
王辉
李建超
关键词:  粉煤灰微珠  环氧树脂  复合材料  涂层  耐磨    
Abstract: The epoxy resin composite coating filled with fly ash cenospheres was prepared. The wear resistance of the compo-site coating was measured using JM-V abrasion tester. And the effect of cenospheres content, cenospheres particle size, test load and speed on the wear resistance of composite coating was discussed. The results show that with the increase of cenospheres content, the wear resistance of the composites coating increases first and then decreases and it reaches the maximum when the content of cenos-pheres is 15wt%. With the increase of particle size of cenospheres, the cenospheres are more easily broken in the wear process, which leads to the wear resistance decrease of the composite coating. Compared with the wear test results of the composite coating under different load and speed, it is found that the wear resistance of the composite coating decreases with the increase of the load. Increase the test speed, the wear mass loss of the composite coating will become larger.
Key words:  fly ash cenospheres    epoxy resin    composites    coating    wear resistance
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TB332  
基金资助: *国家自然科学基金(51305023)
通讯作者:  陈平:通讯作者,女,1973年生,博士,副教授,主要研究方向为聚合物基复合材料 E-mail:chenp@ustb.edu.cn   
引用本文:    
李苗苗, 陈平, 王辉, 李建超. 粉煤灰微珠填充环氧树脂复合涂层耐磨性能的研究*[J]. 《材料导报》期刊社, 2017, 31(4): 36-40.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.009  或          https://www.mater-rep.com/CN/Y2017/V31/I4/36
1 Sun T, Fan H Y, Wang Z, et al. Modified nano Fe2O3-epoxy composite with enhanced mechanical properties[J]. Mater Des,2015,87:10.
2 Zhou H L Z, Liu H Y, Zhou H M, et al. On adhesive properties of nano-silica/epoxy bonded single-lap joints[J]. Mater Des,2016,95:212.
3 Conradi M, Zorko M, Kocijan A, et al. Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers[J]. Mater Chem Phys,2013,137:910.
4 Ji Q L, Zhang M Q, Rong M Z, et al. Tribological properties of nanosized silicon carbide filled epoxy composites[J]. Acta Mater Compos Sin,2004,21(6):14(in Chinese).
纪秋龙, 章明秋, 容敏智, 等. 纳米碳化硅填充环氧树脂复合材料的摩擦磨损特性[J]. 复合材料学报,2004,21(6):14.
5 Li J N, Yu K J, Qian K, et al. The reinforcing and toughening effect of grapheme/SiO2 hybrid material on epoxy-based composites[J]. Mater Rev: Res,2014,28(10):51(in Chinese).
李佳铌, 俞科静, 钱坤, 等. 石墨烯/SiO2杂化材料增强增韧环氧树脂基复合材料[J]. 材料导报:研究篇,2014,28(10):51.
6 Palraj S, Selvaraj M, Maruthan K, et al. Corrosion and wear resis-tance behavior of nano-silica epoxy composite coatings[J]. Prog Org Coat,2015,81:132.
7 Kang Y K, Chen X H, Song S Y, et al. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings[J]. Appl Surf Sci,2012,258:6384.
8 Luo Y, Dong X M, Yu X Y, et al. Tribological performance of modified nano-Si3N4/EP composites[J]. Polym Mater Sci Eng,2010,26(6):71(in Chinese).
罗颖, 董先明, 禹筱元, 等. 改性纳米 Si3N4/环氧树脂复合材料的摩擦磨损特性[J]. 高分子材料科学与工程,2010,26(6):71.
9 Guo Q B, Tan Y H, Li C J. Friction and wear properties of SCF/EP composites filled with nano-SiO2 [J]. Polym Mater Sci Eng,2011,27(7):34(in Chinese).
郭清兵, 谭赟华, 李翠金. 纳米SiO2填充短炭纤维/环氧复合材料的摩擦磨损性能[J].高分子材料科学与工程,2011,27(7):34.
10 Kolay P K, Bhusal S. Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization[J]. Fuel,2014,117:118.
11 Acar I, Atalay M U. Recovery potentials of cenospheres from bituminous coal fly ashes[J]. Fuel,2016,180:97.
12 Zyrkowski M, Neto R C, Santos L F, et al. Characterization of fly-ash cenospheres from coal-fired power plant unit[J]. Fuel,2016,174:49.
13 Wang C F, Liu J C, Du H Y, et al. Effect of fly ash cenospheres on the microstructure and properties of silica-based composites[J]. Ceram Int,2012,38:4395.
14 Chen P, Ma F, Mei H F, et al. Erosive wear characteristics of high-alumina cenospheres filled epoxy resin composites [J]. J University of Science and Technology Beijing,2014,36(2):218(in Chinese).
陈平, 马峰, 梅华锋, 等. 高铝微珠/环氧树脂复合材料冲蚀磨损特性[J]. 北京科技大学学报,2014,36(2):218.
15 Chen P, Li M M, Ma F, et al. Abrasion performance of epoxy resin composite filled with cenopheres [J]. J Funct Mater,2015,46(22):22062(in Chinese).
陈平, 李苗苗, 马峰, 等. 微珠填充环氧树脂复合材料的磨耗性能[J]. 功能材料,2015,46(22):22062.
16 Manakari V, Parande G, Doddamani M, et al. Dry sliding wear of epoxy/cenosphere syntactic foams [J]. Tribology Int,2015,92:425.
17 Das A, Satapathy B K. Structural, thermal, mechanical and dyna-mic mechanical properties of cenosphere filled polypropylene compo-sites [J]. Mater Des,2011,32:1477.
18 Srivastava V K, Pawar A G. Solid particle erosion of glass fiber reinforced flyash filled epoxy resin composites [J]. Compos Sci Technol,2006,66:3021.
19 Gu J, Wu G H, Zhang Q. Effect of porosity on the damping properties of modified epoxy composites filled with fly ash [J]. Scripta Mater,2007,57:529.
20 Ye S J, Fan Q, Deng L Y, et al. The mechanical and tribological properties of copper filled PTFE composites[J]. Lubrication Eng,2010,35(9):60(in Chinese).
叶索娟, 范清, 邓联勇, 等. 铜粉对 PTFE复合材料力学及摩擦学性能的影响[J]. 润滑与密封,2010,35(9):60.
21 Xie T, Jiang K, Ding Y. Numerical simulation of influence of filler size on tribological properties of Cu/PTFE composites[J]. Tribology,2016,36(1):35(in Chinese).
解挺, 江凯,丁亚. 填料粒径对Cu/PTFE复合材料摩擦学性能影响的数值模拟[J]. 摩擦学学报,2016,36(1):35.
22 Ding J, Ma J Q, Xue Q J. Dry-sliding tribological properties of isocyanate-terminated polybutadine rubber-epoxy resin filled with nano Al2O3 coating[J]. Tribology,2006,26(4):314(in Chinese).
丁军, 马吉强, 薛群基. 纳米Al2O3填充端异氰酸酯基聚丁二烯橡胶-环氧树脂复合涂层的干滑动摩擦磨损性能研究[J]. 摩擦学学报,2006,26(4):314.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[5] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[6] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[7] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[8] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[9] 吴法霖, 邓贤明, 张天才, 程云涛, 陈坤, 高琴, 孙宽. 自适应变色迷彩涂层制备及性能研究[J]. 材料导报, 2025, 39(1): 24080036-5.
[10] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[11] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[12] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[13] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[14] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[15] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed