Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 101-107    https://doi.org/10.11896/j.issn.1005-023X.2017.015.015
  材料综述 |
泡沫铝三明治板的研究与应用进展*
刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡
北京有色金属研究总院,国家有色金属复合材料工程技术研究中心,北京 100088;
Progress in Research and Application of Aluminum Foam Sandwich Panels
LIU Yanqiang, FAN Jianzhong, MA Zili, YANG Bicheng, NIE Junhui, WEI Shaohua, HAO Xinxiang, DENG Fan
National Engineering & Technology Research Center for Nonferrous Metal Matrix Composites, General Research Institute for Nonferrous Metals, Beijing 100088;
下载:  全 文 ( PDF ) ( 1689KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫铝三明治板(Aluminum foam sandwich,AFS)是基于泡沫铝材料开发的一类材料-结构一体化的先进多孔复合结构。AFS是交通运输、建筑以及航空航天等装备结构轻量化的重要材料,具有广阔的应用前景。概述了AFS的几类制备技术的基本原理和研究现状,着重分析了复合预制体制备、合金成分、AFS发泡成型工艺等关键环节中存在的理论和技术难点。介绍了AFS作为结构材料和功能材料的典型应用案例;最后总结提出了AFS材料研究和工程化技术开发的关键点与突破途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘彦强
樊建中
马自力
杨必成
聂俊辉
魏少华
郝心想
邓凡
关键词:  泡沫铝  三明治复合板  粉末冶金  熔体发泡    
Abstract: Aluminum foam sandwich (AFS) panel is an advanced material-structure integral cellular composite structure based on Al foam. AFS panel has extensive applications in transportation, architectural and aerospace industry, which is looked forward to reduce the structures weight of devices. Principle and current status of the producing techniques are overviewed, based on which, particularly, several scientific and technical obstacles on the fabrication of composite precursor, designing of alloy constituent, in-situ foaming process etc. are discussed. Then, some representative applications of AFS as both structural and functional materials are introduced. In the end, both the challenges and keynotes on materials investigation and technique developments are proposed.
Key words:  aluminum foam    sandwich panel    powder metallurgy    melt foaming
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TG146.2  
基金资助: *北京市科技新星计划项目(Z171100001117067)
作者简介:  刘彦强:男,1982年生,博士,高级工程师,研究方向为铝基复合材料、多孔金属材料与复合结构 E-mail:lyq9757@163.com
引用本文:    
刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡. 泡沫铝三明治板的研究与应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 101-107.
LIU Yanqiang, FAN Jianzhong, MA Zili, YANG Bicheng, NIE Junhui, WEI Shaohua, HAO Xinxiang, DENG Fan. Progress in Research and Application of Aluminum Foam Sandwich Panels. Materials Reports, 2017, 31(15): 101-107.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.015  或          http://www.mater-rep.com/CN/Y2017/V31/I15/101
1 Ashby M F, Evans A, Fleck N A, et al. Metal foams: A design guide [M]. Boston: Butterworth-Heinemann,2000:1.
2 Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Prog Mater Sci,2001,46(6):559.
3 Lu T J, He D P, Chen C Q, et al. The multi-functionality of ultra-light porous metals and their applications[J]. Adv Mechan,2006,36(4):517(in Chinese).
卢天健, 何德坪, 陈常青,等. 超轻多孔金属材料的多功能特性及应用[J]. 力学进展,2006,36(4):517.
4 Yu C J, Eifert H H, Banhart J, et al. Metal foams[J]. Adv Mater Processes,1998,154(5):45.
5 Srivastava V C, Sahoo K L. Processing, stabilization and applications of metallic foams. Art of science[J]. Mater Sci-Poland,2007,25(3):733.
6 Garcíamoreno F. Commercial applications of metal foams:Their properties and production[J]. Materials,2016,9(2):85.
7 Jiang B, Zhao N Q. Preparation and application progression of aluminum foam[J]. Heat Treatment Metals,2005, 30(6):36.
姜斌, 赵乃勤. 泡沫铝的制备方法及应用进展[J]. 金属热处理,2005,30(6):36.
8 Wang Y W, Xia Y, Wang Z P, et al. Research status on application of aluminum foam[J]. Mater Rev:Rev,2013,27(8): 132.
王应武, 夏宇, 王志平, 等. 泡沫铝材料应用研究现状[J]. 材料导报:综述篇,2013,27(8):132.
9 Harte A M, Fleck N A, Ashby M F. Sandwich panel design using aluminum alloy foam[J]. Adv Eng Mater,2000, 2(4):219.
10 Banhart J, Seeliger H W. Aluminium foam sandwich panels: Manufacture, metallurgy and applications[J]. Adv Eng Mater, 2008,10(9):793.
11 Banhart J, Seeliger H. Recent trends in aluminum foam sandwich technology[J]. Adv Eng Mater,2012,14(12):1082.
12 Wang M, Wang L C. Research status and development prospects of aluminum foam and composite structures[J]. Mater Rev:Rev,2015,29(3):81(in Chinese).
王淼, 王录才. 泡沫铝及其复合结构的制备和应用现状[J]. 材料导报:综述篇,2015,29(3):81.
13 Hao Q, Qiu S, Hu Y. Development on preparation technology of aluminum foam sandwich panels[J]. Rare Metal Mater Eng,2015,44(3):548.
14 Seeliger H W. Manufacture of aluminum foam sandwich (AFS) components[J]. Adv Eng Mater,2002,4(10):753.
15 Seeliger H W. Aluminium foam sandwich (AFS) ready for market introduction[J]. Adv Eng Mater,2004,6(6):448.
16 Banhart J. Light metal foams-history of innovation and technological challenges [J]. Adv Eng Mater,2013,15(3):82.
17 Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications [M]// Korner C, Singer R F. Foaming processes for Al. Weinheim: Wiley-VCH,2003:8.
18 Zuo X Q, Kennedy A R, Bi Y S, et al. Fabrication and cell structure refining mechanism of aluminum foam with fine cell structure[J]. Chiniese J Nonferrous Metals,2009,19(4):683.
左孝青, Kennedy A R, 毕业顺,等.小孔径泡沫铝的制备及孔结构细化机理[J]. 中国有色金属学报,2009,19(4):683.
19 Shang J T, Chu X, He D. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming[J]. Mater Sci Eng B,2008,151(2):157.
20 Baumeister J, Schrader H. Methods for manufacturing foamable metal bodies: US, 5151246 [P].1991-09-29.
21 Baumgärtner F, Duarte I, Banhart J. Industrialization of powder compact foaming process[J]. Adv Eng Mater,2000, 2(4):168.
22 Vukobratovich D. Ultra-lightweight optics for laser communications[C]// Free-Space Laser Communication Technologies Ⅱ. Los Ange-les,1990:178.
23 Geiger A L. Metal-matrix composite foam: A new material for sandwich-construction mirrors[J]. Proceedings of SPIE-The Internatio-nal Society for Optical Engineering,1990,1303:546.
24 Wan L, Huang Y, Lv S, et al. Fabrication and interfacial characte-rization of aluminum foam sandwich via fluxless soldering with surface abrasion[J]. Compos Structures,2015,123(3):366.
25 Markaki A E, Clyne T W. Characterisation of impact response of metallic foam/ceramic laminates[J]. Mater Sci Technol,2000,16(7-8):785.
26 Markaki A E, Clyne T W. Energy absorption during failure of la-yered metal foam/ceramic laminates[J]. Mater Sci Eng A,2002,323(1-2):260.
27 Gergely V, Simancík F, Matthams T J, et al. Preparation of cera-mic/metal foam laminates using an in situ foaming technique [C]// ICCM-12. Paris,1999:589.
28 Baumeister J, Banhart J, Weber M. Verfahren zur herstellung eines metallischen verbundwerkstoffs (process for manufacturing metallic composite materials), DE 4426627 C2[P].1994.
29 Luo H, Liu Y, et al. Preparation of aluminum foam sandwich reinforced by steel sheets [J]. Procedia Mater Sci,2014,4(4):39.
30 Lin H, Luo H, et al. Diffusion bonding in fabrication of aluminum foam sandwich panels[J]. J Mater Process Technol,2016,230:35.
31 Wang Y, Ren X, Hou H, et al. Processing and pore structure of aluminium foam sandwich[J]. Powder Technol,2015, 275:344.
32 Zu G Y,Zhang M, Yao G C, et al. Preparing aluminum foam sandwich by the roll-bonding-powder metallurgy foaming technique[J]. Chinese J Process Eng,2006,6(6):973(in Chinese).
祖国胤, 张敏, 姚广春,等. 轧制复合-粉末冶金发泡工艺制备泡沫铝夹心板[J]. 过程工程学报,2006,6(6):973.
33 梁晓军, 朱勇刚, 陈锋,等. 泡沫铝三明治结构的制备[J]. 江苏冶金,2004,32(1):7.
34 Banhart J, et al. Real time X-ray investigation of aluminum foam sandwich production[J]. Adv Eng Mater,2001,3(6):507.
35 Beck T, Lähe D, Baumgärtner F. The fatigue behavior of an alumi-nium foam sandwich beam under alternating bending[J]. Adv Eng Mater,2002,4(10):787.
36 Duarte I, Banhart J. A study of aluminium foam formation-kinetics and microstructure[J]. Acta Mater,2000, 48(9):2349.
37 Helwig H M, Garcia-Moreno F, Banhart J. A study of Mg and Cu additions on the foaming behaviour of Al-Si alloys[J]. J Mater Sci,2011,46(15):5227.
38 Jiménez C, et al. Improvement of aluminium foaming by powder consolidation under vacuum[J]. Scripta Mater,2009,61(5):552.
39 Sun Qi. Fabrication, characterization and properties of Al foam by powder metallurgy[D]. Beijing:General Research Institute for Nonferrous Metals,2016(in Chinese).
孙琦. 粉末冶金泡沫铝的制备工艺研究[D]. 北京:北京有色金属研究总院,2016.
40 Asavavisithchai S, Kennedy A R. Effect of powder oxide content on the expansion and stability of PM-route Al foams[J]. J Colloid Interface Sci,2006,297(2):715.
41 Körner C, Arnold M, Singer R F. Metal foam stabilization by oxide network particles[J]. Mater Sci Eng A,2005, 396(1-2):28.
42 Dudka A, Garcia-Moreno F, et al. Structure and distribution of oxides in aluminium foam[J]. Acta Mater, 2008,56(15):3990.
43 Ptashnik W J. Method for producing metal alloy foams:US, 3758291 [P].1971-10-29.
44 Gergely V, Clyne T W. The FORMGRIP process: Foaming of reinforced metals by gas release in precursors[J]. Adv Eng Mater,2000,2(4):175.
45 Gergely V, Curran D C, Clyne T W. The FOAMCARP process: Foaming of aluminium MMCs by the chalk-aluminium reaction in precursors[J]. Compos Sci Technol,2003,63(16):2301.
46 Zhang Q, Lu T, He S, et al. Control of pore morphology in close-celled aluminum foams[J]. Academic J Xi’an Jiaotong University,2007,41(3):255(in Chinese).
张钱城, 卢天健, 何思渊,等. 闭孔泡沫铝的孔结构控制[J]. 西安交通大学学报,2007,41(3):255.
47 Korner C, Hirschmann M, Wiehler H. Integral foam moulding of light metals[J]. Mater Trans,2006, 47(9):2188.
48 Hartmann J, et al. Aluminum integral foams with near-microcellular structure [J]. Adv Eng Mater,2011,13(11):1050.
49 URL: en.metalfoam.de.
50 Banhart J. Aluminium foams for lighter vehicles[J]. Int J Vehicle Design,2005,37(2-3):114.
51 Degischer H P, Kriszt B. Handbook of cellular metals: Production, processing, applications [M]// Haberling C. Service properties and exploitability. Weinheim: Wiley-VCH,2003:299.
52 Claar T D, et al. Ultra-lightweight aluminum foam materials for automotive applications[J]. Int J Powder Metall,2000,36(6):61.
53 Baumeister J, Weise J, Hirtz E, et al. Applications of aluminium hybrid foam sandwiches in battery housings for electric vehicles[J]. Procedia Mater Sci,2014,4(12):317.
54 Schwingel D, Seeliger H W, Vecchionacci C, et al. Aluminium foam sandwich structures for space applications[J]. Acta Astronautica,2007,61(1-6):326.
55 Gama B A, et al. Aluminum foam integral armor: A new dimension in armor design[J]. Compos Struct,2001,52(3-4):381.
56 姚广春,等. 泡沫铝材料[M]. 北京: 科学出版社,2013:4.
57 Feng Y, Zhen H W, Zhu Z G, et al. Electromagnetic shielding effectiveness of closed-cell aluminum alloy foams[J]. Chinese J Nonferrous Metals,2004,14(1):33(in Chinese).
凤仪, 郑海务, 朱震刚,等. 闭孔泡沫铝的电磁屏蔽性能[J]. 中国有色金属学报,2004,14(1):33.
58 Chen S, et al. Applications of open-cell and closed-cell metal foams for radiation shielding[J]. Procedia Mater Sci,2014,4:293.
59 Smith L L. Cookware vessel: US, 6605368 B2[P].2003-08-12.
[1] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[2] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[3] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[4] 袁振军, 贺甜甜, 杜三明, 张永振. 硼铁含量对铜基粉末冶金制动材料性能的影响[J]. 材料导报, 2018, 32(18): 3223-3229.
[5] 徐义库,杨 蕾,宋绪丁,陈永楠,爨洛菲,张 朝,郝建民,刘 林. 闭孔泡沫铝微弧氧化及其性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1655-1658.
[6] 郝刚领,许巧平. 创新构型泡沫TiAl的制备及其力学响应特征[J]. 《材料导报》期刊社, 2018, 32(10): 1659-1662.
[7] 单既万, 胡正飞, 王宇, 姚骋, 张振. 泡沫铝冶金连接及其界面结构与力学性能研究[J]. 《材料导报》期刊社, 2017, 31(8): 94-97.
[8] 余为,薛海龙. 浸泡腐蚀对泡沫铝-环氧树脂复合材料弯曲性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 111-115.
[9] 张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
[10] 黄本生, 赵星, 吴序鹏, 刘段苏, 曾强. 泡沫铝连接件焊接工艺的应用现状与展望*[J]. 《材料导报》期刊社, 2017, 31(19): 66-71.
[11] 闫畅, 宋绪丁, 荆传贺, 封硕. 工业闭孔泡沫铝压缩力学性能及变形机理*[J]. 《材料导报》期刊社, 2017, 31(18): 92-96.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed