Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3795-3800    https://doi.org/10.11896/cldb.18100016
  金属与金属基复合材料 |
不同热流流场下低温超音速喷涂Al基金属玻璃粉体的晶化行为
王晓明1,,文舒2,杨柏俊3,韩国峰1,朱胜1,李宇中4
1 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
2 湘潭大学材料科学与工程学院,湘潭 411105
3 中国科学院金属研究所沈阳材料科学国家重点实验室,沈阳 110016
4 烟台领示软件科技有限公司,烟台 264000
Crystallization Behavior of the Al-based Metal Glass Powders Sprayed by Low Temperature Supersonic Velocity Under Various Heat Flow Fields
WANG Xiaoming1, WEN Shu2, YANG Baijun3, HAN Guofeng1, ZHU Sheng1, LI Yuzhong4
1 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072
2 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016
4 Yantai Demonstration Software Technology Co., Ltd.,Yantai 264000
下载:  全 文 ( PDF ) ( 3230KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于拉格朗日法的数值模拟与试验测试相结合的方法获得了Al基金属玻璃粉体与丙烷-空气、煤油-氧气及高温空气三种热流交互作用的气固双相流流场状态;同时,结合Al基金属玻璃粉体基本热物性测试,阐明了热流流场诱发粉体加速、温升及晶化转变的特性演化规律。结果表明:不同的热流流场环境下产生不同的温度场,有助于玻璃粉体加速沉积成形。煤油-氧气热流流场会诱发粉体析出Al2Y等有害相,甚至出现熔化与气化现象。高温空气热流无法消除Al基金属玻璃粉体的固有脆性,难以发生高塑性畸变沉积成形。丙烷-空气热流可将Al基金属玻璃粉体调控至热塑态温度区间,充分利用其在该区间的高塑性、低黏度特性,既能实现高效沉积又可控制晶化转变,是实现Al基金属玻璃最大限度原态沉积的理想热流源。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓明
文舒
杨柏俊
韩国峰
朱胜
李宇中
关键词:  热流流场  低温超音速喷涂  Al基金属玻璃  粉体特性  晶化行为    
Abstract: The Euler-Lagrange based numerical simulation and experimental tests were combined to achieve the three kinds of gas-solid two-phase flow fields, which referred to the Al-based metal glass powder-particles with propane-air, kerosene-oxygen and high temperature air. Meanwhile, the evolution law of the acceleration, temperature rise and crystallization of the powder induced by heat flow of gas field were expounded by the basic thermal physical property characterization of Al-based metal glass powder. It could be found from the results that various temperature fields produced by various heat flow fields were beneficial for accelerating the deposition of glass powders. The heat flow field of kerosene-oxygen would induce the sprayed particles to release harmful phases like Al2Y, and even cause melting and vaporization. The towing effect of the hot air flow could not eliminate the inherent brittleness of Al-based metal glass powders, blocking the way for the particles to form deposited layers with high plastic distortion. Fortunately, the heat flow effect of propane-air was able to adjust the Al-based metallic glass powder to the thermoplastic temperature range, and make full use of the high plasticity and low viscosity of the Al-based metal glass on its thermoplastic state, which can achieve high efficiency deposition as well as control crystallization transition. Consequently, propane-air was recognized as an ideal heat flow resource to achieve the deposition of Al-based metal glass with maximum original properties.
Key words:  heat flow fields    low temperature supersonic velocity spraying    Al-based metal glass    characteristic of powder    crystallization behavior
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TG174.442  
基金资助: 国家重点研发计划(2018YFB1105800);东北大学航空动力装备振动及控制教育部重点实验室研究基金资助项目(VCAME201706);
作者简介:  王晓明,工学博士,陆军装甲兵学院装备再制造技术国防科技重点
实验室副研究员。主要研究方向:轻合金表面防护、增材再制造、复合能场成形。荣获省部级科技进步一等奖1项、三等奖2项;获国家发明专利授权20余项;发表学术论文70余篇,SCI/EI检索20余篇;出版专著4部。主持或参与了国防预研计划项目“有色金属件载能束与特种能场复合修复强化技术”;国防计划项目“铜质件磨蚀损伤的修复层设计及性态预测模型研究”;国防计划项目“轻合金构(零)件损伤修复关键技术研究”;国防计划项目“铜合金关键件损伤修复技术研究”;预研基金项目“镁合金表面铝基合金防护层的成型机理及性能研究”;国际合作项目“重载装备的绿色再制造技术与工程”,国家863项目“工程机械共性部件再制造关键技术及示范”等科研课题20余项。
引用本文:    
王晓明, 文舒, 杨柏俊, 韩国峰, 朱胜, 李宇中. 不同热流流场下低温超音速喷涂Al基金属玻璃粉体的晶化行为[J]. 材料导报, 2019, 33(22): 3795-3800.
WANG Xiaoming, WEN Shu, YANG Baijun, HAN Guofeng, ZHU Sheng, LI Yuzhong. Crystallization Behavior of the Al-based Metal Glass Powders Sprayed by Low Temperature Supersonic Velocity Under Various Heat Flow Fields. Materials Reports, 2019, 33(22): 3795-3800.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100016  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3795
[1] Cizek J, Matejkova M, Dlouhy I, et al. Journal of Thermal Spray Technology, 2015, 24(5), 758.
[2] Jr R T. ASM Handbook, Volume 5A, Thermal Spray Technology,Plastics Industry, UK, 2013.
[3] Lech Pawlowski. The science and engineering of thermal spray coatings/2nd ed, Wiley, UK, 2008.
[4] Siegmann S, Abert C. Surface and Coatings Technology, 2013, 220, 3.
[5] Koga G Y, Schulz R, Savoie S, et al. Surface and Coatings Technology, 2017, 309, 938.
[6] Yugeswaran S, Kobayashi A. Vacuum, 2014, 110, 177.
[7] Krebs S, Kuroda S, Katanoda H, et al. Journal of Thermal Spray Technology, 2017, 26(1-2), 265.
[8] Molak R M, Araki H, Watanabe M, et al. Journal of Thermal Spray Technology, 2015, 24(8), 1459.
[9] Yan C J, Fan W. Combustion theory. Third edition. Northwestern Polytechnical University Press, China, 2016 (in Chinese).严传俊, 范玮. 燃烧学.第3版. 西北工业大学出版社, 2016.
[1] 黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
[2] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[3] 梁存光,李新梅. 基于灰色关联分析与回归分析WC-12Co涂层工艺参数的多目标优化[J]. 《材料导报》期刊社, 2018, 32(10): 1752-1756.
[4] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[5] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed