Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1672-1677    https://doi.org/10.11896/j.issn.1005-023X.2018.10.020
  材料研究 |
TMC-300对PLLA/PPC合金性能的影响
齐亚平1,罗发亮1,王克智2,沈志远1,武学坚1,王迪然1
1 宁夏大学省部共建煤炭高效利用与绿色化工国家重点实验室,银川 750021;
2 山西化工研究所,太原 030021
Effect of TMC-300 on the Performance of PLLA/PPC Alloy
QI Yaping1, LUO Faliang1, WANG Kezhi2, SHEN Zhiyuan1, WU Xuejian1, WANG Diran1
1 State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021;
2 Shanxi Provincial Institute of Chemical Industry, Taiyuan 030021
下载:  全 文 ( PDF ) ( 4929KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善聚L-乳酸(PLLA)/聚碳酸亚丙酯(PPC)合金的结晶等性能,利用熔融共混法在合金中添加PLLA专用酰肼类成核剂TMC-300。采用差示扫描量热仪(DSC)、广角X射线衍射仪(WAXD)、小角X射线散射仪(SAXS)、偏光显微镜(POM)、扫描电子显微镜(SEM)及力学分析方法考察了PLLA专用酰肼类成核剂TMC-300对PLLA/PPC合金的结晶及力学性能的影响。结果显示,添加质量分数为0.5%的TMC-300对PLLA/PPC合金之间的相容性影响甚微,但可提高PLLA/PPC合金的结晶度,使合金中PLLA的长周期减小,且添加TMC-300的合金中PLLA晶核数目增多,球晶尺寸减小。此外,添加0.5%的TMC-300可提高PLLA/PPC合金整体的断裂伸长率。在质量比为80/20的PLLA/PPC合金中加入0.5%的TMC-300后,该三元共混材料的冲击韧性达到最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐亚平
罗发亮
王克智
沈志远
武学坚
王迪然
关键词:  聚L-乳酸  聚碳酸亚丙酯  TMC-300  结晶性能  力学性能    
Abstract: In order to improve the crystallization properties of poly (L-lactic acid) (PLLA)/poly (propylene carbonate) (PPC) alloy, a PLLA-specific hydrazide nucleating agent TMC-300 was added into the alloy by melt blending. Differential scanning calori-meter (DSC), wide angle X-ray diffraction (WAXD), small angle X-ray scattering (SAXS), polarized optical microscopy (POM), scanning electron microscopy (SEM) and mechanical analysis were utilized to investigate the effects of TMC-300 on the properties of PLLA/PPC alloy. The results manifested that the addition of 0.5% TMC-300 had little effect on the compatibility between PLLA/PPC alloys, but the crystallinity of PLLA/PPC alloy increased, and the long period of PLLA in the alloy decreased. The number of PLLA nuclei in the alloy increased after adding in TMC-300, which the size of the spherulite decreased. In addition, the elongation at break of the PLLA/PPC alloy was increased with added 0.5% of TMC-300. The impact toughness of the alloy improved and its ma-ximal value corresponded to PLLA/PPC alloy of 80/20 mass ratio with addition of 0.5% TMC-300.
Key words:  poly(L-lactic acid)    poly(propylene carbonate)    TMC-300    crystallization properties    mechanical properties
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  O631  
基金资助: 国家自然科学基金(51063004);宁夏回族自治区化学工程与技术国内一流学科资助(NXYLXK2017A04)
通讯作者:  罗发亮:通信作者,男,1976年生,博士,教授,硕士研究生导师,主要从事高分子材料结构、性能及改性研究 E-mail:flluo@iccas.ac.cn   
作者简介:  齐亚平:女,1992年生,硕士研究生,主要研究方向为高分子材料改性 E-mail:820966382@qq.com
引用本文:    
齐亚平,罗发亮,王克智,沈志远,武学坚,王迪然. TMC-300对PLLA/PPC合金性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1672-1677.
QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy. Materials Reports, 2018, 32(10): 1672-1677.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.020  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1672
1 Frackowiak S, Ludwiczak J, Leluk K, et al. Foamed poly(lactic acid) composites with carbonaceous fillers for electromagnetic shielding[J]. Materials & Design,2015,65:749.
2 Fonseca C, Ochoa A, Ulloa M T, et al. Poly(lactic acid)/TiO2, nanocomposites as alternative biocidal and antifungal materials[J]. Materials Science & Engineering C,2015,57:314.
3 Saeidlou S, Huneault M A, Li H, et al. Poly(lactic acid) crystallization[J]. Progress in Polymer Science,2012,37(12):1657.
4 Fan Y, Zhu J, Yan S, et al. Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nuc-leating agent and poly(L-lactic acid)[J]. Polymer,2015,67:63.
5 Monticelli O, Calabrese M, Gardella L, et al. Silsesquioxanes: Novel compatibilizing agents for tuning the microstructure and properties of PLA/PCL immiscible blends[J]. European Polymer Journal,2014,58(9):69.
6 Song P, Chen G, Wei Z, et al. Rapid crystallization of poly(L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent[J]. Polymer,2012,53(19):4300.
7 Chen Weifeng. Research progress in completely biodegradable PPC blends[J]. Plastics Science and Technology,2015,275(43):68(in Chinese).
陈卫丰.完全生物降解PPC共混复合材料的研究进展[J].塑料科技,2015,275(43):68.
8 Fu Luxiang, Tan Jingzhuo, Qin Hang, et al. Structure and property of fully biodegradable PLA/PPC alloy[J]. China Plastics Industry,2006(11):14(in Chinese).
富露祥,谭敬琢,秦航,等.完全生物降解塑料PLA/PPC合金的结构与性能研究[J].塑料工业,2006(11):14.
9 Bai H, Yong Z, Zhang Y, et al. Crystallization kinetics of toughed poly(butylene terephthalate)/polycarbonate blends[J]. Journal of Applied Polymer Science,2006,101(3):1295.
10 Yasuniwa M, Tsubakihara S, Sugimoto Y, et al. Thermal analysis of the double-melting behavior of poly(L-lactic acid)[J]. Journal of Polymer Science Part B Polymer Physics,2004,42(1):25.
11 Lorenzo M L D. Calorimetric analysis of the multiple melting beha-vior of poly(L-lactic acid)[J]. Journal of Applied Polymer Science,2010,100(4):3145.
12 He Yong. Different molecular weight and structure of polylactic acid homopolymer configuration condensed with the solid copolymer, thermodynamics and kinetics of crystallization[D]. Shanghai: Fudan University,2008(in Chinese).
何勇.不同分子量与构型结构的聚乳酸均聚物与立体共聚物的凝聚态、热力学及结晶动力学研究[D].上海:复旦大学,2008.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed