Preparation and Characterization of a Shape-Stabilized Composite Phase Change Material Based on Palmitic-Stearic Acid/Expanded Graphite for Energy Storage
FANG Guihua*, ZHAO Maosen, SUN Pengbo
College of Mechanical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
Abstract: In this study, a new type of shape-stabilized phase change material (PCM), which is suitable for solar energy storage, was prepared using eutectic mixture of palmitic acid (PA) and stearic acid (SA) as the phase transition material and expanded graphite (EG) as the supporting material. The microstructural and thermal properties of the novel PCM are examined through different techniques. The optimum adsorption mass ratio of PA-SA and EG in composite was obtained as 8∶1, and the best stacking density was 800 kg/m3. And the thermal conductivity is proportional to the packing density. The PA-SA binary eutectic mixture is uniformly distributed in the honeycomb void structure of EG without any chemical reaction, and PCM does not leak even in the molten state. The DSC results reveal that the new composite has an excellent phase transition temperature (Tm: 54.34 ℃, Tf: 54.02 ℃) and a high latent heat (ΔHm: 163.19 J/g,ΔHf:161.65 J/g).The results of thermal cycling and TGA show that the composite PCM still maintains excellent thermal stability and reliability after 1 000 thermal cycles, and has a broad application prospect in the field of low-temperature energy storage.
通讯作者:
*方桂花,内蒙古科技大学机械工程学院教授、硕士研究生导师。1985年于内蒙古工业大学机械工程学院本科毕业,1987年于沈阳工业大学机械制造专业硕士毕业。目前主要从事基于智能控制的液压系统研究与开发、液压控制系统的在线故障诊断以及可再生能源存储与利用。发表科研论文60余篇,包括Energy & Fuels、Solar Energy Materials and Solar Cells、Applied Mechanics and Materials等。fangguihua@imust.edu.cn
引用本文:
方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
FANG Guihua, ZHAO Maosen, SUN Pengbo. Preparation and Characterization of a Shape-Stabilized Composite Phase Change Material Based on Palmitic-Stearic Acid/Expanded Graphite for Energy Storage. Materials Reports, 2023, 37(20): 22030005-7.
1 Li T, Wu M, Wu S, et al. Nano Energy, 2021, 89, 106338. 2 Miao Y, Li L P, Qu M J, et al. Materials Reports, 2017, 31(S2), 233. 苗扬, 李丽萍, 曲美洁, 等. 材料导报, 2017, 31(S2), 233. 3 Guo F, Zhang J Y, Tian Y, et al. Acta Energiae Solaris Sinica, 2020, 41(9), 219. 郭放, 张俊月, 田原, 等. 太阳能学报, 2020, 41(9), 219. 4 Zahir M H, Rahman M M, Irshad K, et al. Nanomaterials, 2019, 9(12), 1173. 5 Khan Z, Khan Z, Ghafoor A. Energy Conversion & Management, 2016, 115(5), 132. 6 Gu Q J, Fei H, Wang L Y, et al. Chemical Industry and Engineering Progress, 2019, 38(6), 2825. 顾庆军, 费华, 王林雅, 等. 化工进展, 2019, 38(6), 2825. 7 Ma L, Guo C, Ou R, et al. Energy & Fuels, 2018, 32(4), 5453. 8 Zhou T T, Xiong Z B, Wu Z G, et al. Chemical Industry and Engineering Progress, 2022, 41(2), 892. 周涛涛, 熊志波, 吴志根, 等. 化工进展, 2022, 41(2), 892. 9 Rathod M K, Banerjee J. Renewable & Sustainable Energy Reviews, 2013, 18, 246. 10 San A. Energy Conversion & Management, 2003, 44(14), 2277. 11 Gallart-Sirvent P, Martín M, Villorbina G, et al. RSC Advances, 2017, 7(39), 24133. 12 Fazilati M A, Alemrajabi A A. Energy Conversion and Management, 2013, 71, 138. 13 Singh P, Sharma R K, An Su A K, et al. Solar Energy Materials and Solar Cells, 2021, 223, 110955. 14 Jiang Z P, Tie S N. Materials Reports, 2016, 30(12), 55. 蒋自鹏, 铁生年. 材料导报, 2016, 30(12), 55. 15 Ma Z, Lin W, Sohel M I. Renewable and Sustainable Energy Reviews, 2016, 58, 1256. 16 Kim D, Jung J, Kim Y, et al. International Journal of Heat & Mass Transfer, 2016, 95, 735. 17 Rathore P, Shukla S K. Renewable Energy, 2021, 176, 295. 18 Zhang Z, Zhang N, Peng J, et al. Applied Energy, 2012, 91(1), 426. 19 Fang G, Yu M, Meng K, et al. Energy & Fuels, 2020, 34(8), 10109. 20 Yuan Y, Tao W, Cao X, et al. Journal of Chemical & Engineering Data, 2011, 56(6), 2889. 21 Yu H, Gao J, Chen Y, et al. Journal of Thermal Analysis & Calorimetry, 2016, 124(1), 87. 22 Zhang N, Yuan Y, Du Y, et al. Energy, 2014, 78, 950. 23 Karaipekli A, Sar A, Kaygusuz K. Renewable Energy, 2007, 32(13), 2201. 24 Min L, Kao H, Wu Z, et al. Applied Energy, 2011, 88(5), 1606. 25 Sobolciak P, Mrlik M, AlMaadeed M A, et al. Thermochimica Acta, 2015, 617, 111. 26 Gallart-Sirvent P, M Martín, Villorbina G, et al. RSC Advances, 2017, 7(39), 24133. 27 Fei H, Du W, Gu Q, et al. Energy & Fuels, 2020, 34(11), 14893. 28 Zhou D, ZhouY, Yuan J, et al. Journal of Nanomaterials, 2020, 2020, 1.