Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21040242-6    https://doi.org/10.11896/cldb.21040242
  无机非金属及其复合材料 |
降低沥青路面温度的双向热诱导相变结构研究
宫兴1, 英红1, 梁凤芯1, 刘卫东1,2,*, 许修权1
1 桂林电子科技大学建筑与交通工程学院,广西 桂林 541004
2 广西交科集团有限公司,广西道路结构与材料重点实验室,南宁 530007
Bidirectional Heat-induced Phase Change Structure of Asphalt Pavement for Reducing the Pavement Temperature
GONG Xing1, YING Hong1, LIANG Fengxin1, LIU Weidong1,2,*, XU Xiuquan1
1 School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
2 Guangxi Key Laboratory of Road Structure and Materials, Guangxi Transportation Science and Technology Group Co., Ltd., Nanning 530007, China
下载:  全 文 ( PDF ) ( 6164KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为降低沥青路面温度,缓解路面车辙问题,将相变储热与热诱导相结合设计了双向热诱导相变结构 (Bidirectional heat-induced phase change structure,BHI-PCS),同时设置对照组空白结构 (Blank structure,BS)、只添加相变材料的相变结构 (Phase change structure,PCS) 和只添加导热材料的双向热诱导结构 (Bidirectional heat-induced structure,BHIS)。基于ABAQUS有限元分析对不同结构内部的热量变化情况及抗车辙能力进行了模拟,并设计室内测温系统对降温效果进行了验证。研究表明:与对照组相比,BHI-PCS降低路面温度效果更为显著,最大模拟温度降低4.1 ℃,室内测温试验结果与模拟计算结果吻合较好;同时BHI-PCS抵抗车辙的能力较强,最大车辙深度降低46.5%,所提出的结构能够为高温地区降低沥青路面温度,缓解路面车辙问题提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宫兴
英红
梁凤芯
刘卫东
许修权
关键词:  道路工程  复合定形相变材料(CS-PCM)  沥青路面温度  热诱导  有限元模型  车辙    
Abstract: To reduce the temperature and rutting of asphalt pavement, a bidirectional heat-induced phase change structure (BHI-PCS) was designed through the combination of phase transition heat storage and heat induction. And a blank structure (BS), phase change structure (PCS) with only phase change added, and bidirectional heat-induced structure (BHIS) with only thermal conductive material added were set as the control group. Based on the ABAQUS finite element analysis, the internal heat change and rutting resistance of different structures were simulated, and the cooling effect was verified by the laboratory temperature test. The results show that compared with the control group, BHI-PCS has a more significant effect on reducing road temperature, with the maximum simulated temperature reduced by 4.1 ℃. The laboratory temperature test results are in good agreement with the simulation calculation results. At the same time, BHI-PCS has a strong ability to resist rutting, and the maximum rutting depth can be reduced by 46.5%. The proposed structure can provide reference for reducing the temperature of asphalt pavement in high-temperature areas and alleviating the rutting problem of pavement.
Key words:  road engineering    composite shaped phase change material (CS-PCM)    asphalt pavement temperature    heat induced    finite element model    rutting
发布日期:  2023-07-10
ZTFLH:  U416.217  
基金资助: 桂林电子科技大学研究生优秀学位论文培育项目(18YJPYSS35);中国博士后面上科学基金(2019M653314);广西科技基地和人才专项(AD18281043);国家自然科学基金(51968011;51668012)
通讯作者:  *刘卫东,广西交科集团有限公司高级工程师,2009年6月毕业于大连理工大学,获管理学学士学位。2012年6月毕业于河北工业大学,获工学硕士学位。2016年11月毕业于东南大学交通运输工程专业,获工学博士学位。2016年12—2019年7月就职于桂林电子科技大学,主要从事沥青混合料微细观研究、道路新型相变材料的研发。2019年7月加入广西交科集团有限公司企业技术中心,主要从事农作物纤维改性沥青的研究、功能性路面材料的研发。在国内外重要刊物发表SCI/EI论文20余篇,申报发明专利近10项。lwd200526066@163.com   
作者简介:  宫兴,2018年6月毕业于太原科技大学,获得工学学士学位。于2018年9月进入桂林电子科技大学建筑与交通工程学院学习,主要从事道路工程材料领域的研究。
引用本文:    
宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
GONG Xing, YING Hong, LIANG Fengxin, LIU Weidong, XU Xiuquan. Bidirectional Heat-induced Phase Change Structure of Asphalt Pavement for Reducing the Pavement Temperature. Materials Reports, 2023, 37(13): 21040242-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040242  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21040242
1 Yavuzturk C, Ksaibati K, Chiasson A D. Journal of Materials in Civil Engineering, 2005, 17, 465.
2 Suo Z, Wong W G. Construction and Building Materials, 2009, 23(12), 3492.
3 Mohajerani A, Bakaric J, Jeffrey-Bailey T. Journal of Environmental Management, 2017, 17, 522.
4 Cao X J, Tang B M, Zou X L, et al. Road Materials and Pavement Design, 2015, 16(3), 716.
5 Zhang H L, Chen Z H, Xu G Q, et al. Fuel, 2018, 211, 850.
6 Chen Z H, Zhang H L, Duan H H, et al. Journal of Cleaner Production, 2021, 279, 123675.
7 Li H, Harvey J T, Holland T J, et al. Environmental Research Letters, 2013, 8(1), 15.
8 Mallick R B, Chen B L, Bhowmick S. International Journal of Sustainable Engineering, 2009, 2(3), 214.
9 Synnefa A, Santamouris M, Livada I. Solar Energy, 2006, 80(8), 968.
10 Coleri E, Harvey J T, Yang K, et al. Construction and Building Materials, 2013, 44, 25.
11 Van Bijsterveld W T, Houben L J M, Scarpas A, et al. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1778(1), 140.
12 Tan Y Q, Bian X, Shan L Y, et al. Journal of Building Materials, 2013, 16(2), 354 (in Chinese).
谭忆秋, 边鑫, 单丽岩, 等. 建筑材料学报, 2013, 16(2), 354.
13 Ren J P. Analysis on influence of micro-encapsulated phase change thermoregulation agent on temperature field of asphalt pavement. Master's Thesis, Chang'an University, China, 2015 (in Chinese).
任君平. 微胶囊相变调温剂对沥青路面温度场的影响研究. 硕士学位论文, 长安大学, 2015.
14 He L, Li J, Zhou C, et al. Solar Energy, 2017, 103(6), 448.
15 Ren J, Ma B, Si W, et al. Construction & Building Materials, 2017, 71(71), 53.
16 Ryms M, Lewandowski W M, Klugmann-Radziemska E, et al. Applied Thermal Engineering, 2017, 81, 313.
17 He L H. Preparation and cooling mechanism of composite phase change heat storage asphalt pavement materials. Ph. D. Thesis, Chongqing Jiaotong University, China, 2016 (in Chinese).
何丽红. 复合相变储热沥青路面材料研制及降温机理. 博士学位论文, 重庆交通大学, 2016.
18 Liu T, Guo N S, Tan Y Q, et al. Materials Reports, 2020, 34(23), 23179(in Chinese).
刘涛, 郭乃胜, 谭忆秋, 等. 材料导报, 2020, 34(23), 23179.
19 Du Y F, Shi Q, Wang S Y. Applied Thermal Engineering, 2015, 75, 298.
20 Xu T, Huang X M. Construction and Building Materials, 2012, 28(1), 525.
21 Si W, Ma B, Zhou X Y, et al. Construction and Building Materials, 2018, 178, 529.
22 Ma B, Adhikari S, Chang Y J, et al. Construction and Building Materials, 2013, 42, 114.
23 Alkan C, Günther E, Hiebler S, et al. Solar Energy, 2012, 86, 1761.
24 Wang S, Zhu Q, Duan Y, et al. Journal of Materials in Civil Engineering, 2014, 26(2), 812.
25 Yan Z R. Journal of Tongji University, 1984(3), 79 (in Chinese).
严作人. 同济大学学报, 1984(3), 79.
26 Pan P, Wu S P, Hu X D, et al. Materials, 2017, 10(3), 218.
27 Walubita L F, Zhang J, Das G, et al. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2296(1), 46.
28 Li C, Li L. Construction and Building Materials, 2012, 35, 330.
29 Liao G Y, Huang X M. Application of ABAQUS finite element software in road engineering, Southeast University Press, China, 2014 (in Chinese).
廖公云, 黄晓明. ABAQUS有限元软件在道路工程中的应用, 东南大学出版社, 2014.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[3] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[4] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[5] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[6] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[7] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[8] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[9] 胡恒武, 查旭东, 吕瑞东, 邱梦萱, 钟海阔, 李正, 潘勤学. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 21060129-12.
[10] 周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
[11] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[12] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[13] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[14] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[15] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed