Research Status and Progress of Cu-Ag High-strength and High-conductivity Alloys
ZHANG Daoqi1,2, ZHANG Lin1,*, GUO Xiao1,2, WANG Engang1,*
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China 2 School of Metallurgy, Northeastern University, Shenyang 110819, China
Abstract: Cu-Based alloys with excellent conductivity and mechanical properties have a wide range of applications in the development of modern energy, electric power, machinery, electronic devices, and other industries. Cu-based alloys reinforced by the dispersion of a second phase have high strength and high conductivity, and these can be used in high-tech fields such as pulsed high magnetic field, high-speed rail contact wire, and aerospace technical field. Cu-based binary alloys such as Cu-Nb, Cu-Ag, Cu-Cr and Cu-Zr have been widely studied.The Cu-Ag alloy exhibits superior electrical conductivity and mechanical properties compared to other binary alloys based on copper. As a noble metal, Ag is expensive, and the preparation of Cu-Ag alloys is complicated and expensive. Therefore, in recent years, it has become a popular research topic to design new fabrication methods and alloying elements of Cu-Ag alloys. Scholars have attempted to add some third components to Cu-Ag alloys, which can not only reduce Ag content but also improve comprehensive properties of the alloy. Moreover, the properties of the alloy have been improved by optimizing the heat treatment process in the deformation stages. Results show that alloy strength increases with increasing Ag content. The strength of the alloy can also be improved by combining directional solidification and cold deformation. Some studies have shown that electrical conductivity can be improved by the horizontal continuous casting process or by applying DC and AC magnetic fields during solidification. Currently, Nb, Cr, Zr, W, Fe, and rare-earth elements are used in the synthesis of Cu-Ag alloys. The Nb-rich phase has good ductility and can easily form fibers in the drawing process, leading to increased strength. Zr and W can inhibit the precipitation of Ag, improving alloy strength. Cr can improve the wear resistance of the alloy by approximately 2—3 times;however, ductility of the Cr-rich phase is relatively poor. This paper summarizes recent results in high-strength and high-conductivity Cu-Ag alloys and analyzes methods to improve the properties of Cu-Ag binary alloys and Cu-Ag ternary alloys. In order to facilitate the preparation of Cu-Ag alloys with superior comprehensive properties, this paper aims to provide a valuable reference.
1 Embury J D, Han K. Current Opinion in Solid State and Materials Sience, 1998, 3(3), 304. 2 Fuchs G, Krabbes G, Schätzle P, et al. Physica B Physics of Condensed Matter, 2001, 294(4), 398. 3 Freudenberger J, Kozlova N, Gaganov A, et al. Cryogenics London, 2006, 46(10), 724. 4 Grünberger W, Heilmaier M, Schultz L. Physica B Physics of Condensed Matter, 2001, 294(1), 643. 5 Sakai Y, Inoue K, Maeda H. IEEE Transactions on Magnetics, 1994, 30(4), 2114. 6 Swenson C A, Marshall W S, Gavrilin A V, et al. Physica B Condensed Matter, 2004, 346(1), 561. 7 Bacon J L, Ammerman C N, Coe H, et al. IEEE Transactions on Applied Superconductivity, 2003, 12(1), 695. 8 Sakai Y, Hibaru T, Miura K, et al. Materials Research Society, 2016, 1(17), 1137. 9 Dong Y, Wang X K, Xie Y H, et al. Journal of Alloys and Compounds, 2020, 812, 152112. 10 Zawrah M E, Mohammed A T, Fardous S, et al. Ceramics International, 2017, 43(15), 12698. 11 Aghamiri S M S, Oono N, Ukai S, et al. Journal of Alloys and Compounds, 2019, 783, 674. 12 Neikov O D, Naboychenko S S, Murashova I B. Hand-book of non-ferrous metal powders, Oxford University Press, UK, 2019, pp. 571. 13 Zhao Z, Xiao Z, Li Z, et al. Journal of Materials Engineering and Performance, 2017, 26(11), 5641. 14 Liu Y C, Kondo S, Yu H, et al. Materials Transactions, 2020, 61(5), 955. 15 Ding J, Zhao N Q, Shi C S, et al. Journal of Alloys and Compounds, 2006, 425(1-2), 390. 16 Botcharova E, Freudenberger J, Schultz L. Acta Materialia, 2006, 54(12), 3333. 17 Verhoeven J D, Spitzig W A, Schmidt F A, et al. Journal of Materials Science, 1989, 24(3), 1015. 18 Wang E G, Qu L, Zuo X W. Revue De Metallurgie-Cahiers D Informations Techniques, 2013, 110(4), 289. 19 Quelennec X, Menand A, LeBreton J M, et al. Philosophical Magazine, 2010, 90(9), 1179. 20 Islamgaliev R K, Nesterov K M, Champion Y C, et al. Journal of Applied Physics, 2014, 115(19), 194301. 21 Patra S, Gouthama, Mondal K. Properties in Natural Science, 2014, 24(6), 608. 22 Tian Y Z, Zhang Z F. Scripta Materialia, 2012, 66(2), 65. 23 Tian Y Z, Zhang Z F. Scripta Materialia, 2013, 68(7), 542. 24 Bao G H, Chen C X, Huang L Y, et al. Materials Science and Enginee-ring:A, 2016, 655, 86. 25 Huang J S, Yao D W, Meng L. Metals and Materials International, 2013, 19(2), 225. 26 Jia S G, Zheng M S, Liu P, et al. Materials Science and Engineering:A, 2006, 419(1), 8. 27 Zhang L, Meng L. Materials Science and Technology, 2003, 19(1), 75. 28 Raabe D, Mattissen D. Acta Materialia, 1998, 49(16), 5973. 29 Raabe D, Ohsaki S, Hono K. Acta Materialia, 2009, 57(17), 5254. 30 Lyubimova J, Freudenberger J, Mickel C, et al. Materials Science and Engineering:A, 2010, 527(3), 606. 31 Piyawit W, Xu W Z, Mathaudhu S N, et al. Materials Science and Engineering:A, 2014, 610, 85. 32 Zhao H, Fu H, Xie M, et al. Vacuum, 2018, 154, 190. 33 Rozhnov A B, Pantsyrny V I, Kraynev A V, et al. International Journal of Fatigue, 2019, 128, 105188. 34 Feng J, Song K X, Liang S H, et al. Vacuum, 2020, 175, 109295. 35 Zou M, Lu D P, Fu Q F, et al. Vacuum, 2019, 167, 54. 36 Meng L, Wang M, Liu X, et al. Applied Physics A, 2016, 122(4), 387. 37 Sakai Y, Inoue K, Maeda H. Acta Metallurgica et Materialia, 1995, 43(4), 1517. 38 Guo S L, Liu S P, Liu J C, et al. Journal of Materials Engineering and Performance, 2019, 28(11), 6809. 39 Zhao C C, Zuo X W, Wang E G, et al. Materials Science and Enginee-ring: A, 2016, 652, 296. 40 Han K, Toplosky V J, Goddard R, et al. IEEE Transactions on Applied Superconductivity, 2012, 22(3), 6900204. 41 Liang M, Wang P F, Xu X Y, et al. IEEE Transactions on Applied Superconductivity, 2020, 30(4), 1. 42 Liu J B, Meng L, Zeng Y W, et al. Materials Science and Engineering: A, 2006, 435-436, 237. 43 Liu J B, Zhang L, Dong A P, et al. Materials Science and Engineering: A, 2012, 532, 331. 44 Zuo X W, Guo R, Zhao C C, et al. Journal of Alloys and Compounds, 2016, 676, 46. 45 Zhu L Y, Li L, Ji G L, et al. Special Casting & Nonferrous Alloys, 2017, 37(12), 1357(in Chinese). 朱丽媛, 李雷, 冀国良, 等. 特种铸造及有色合金, 2017, 37(12), 1357. 46 Kong L B, Zhou Y J, Song K X, et al. Transactions of Mate Rials and Heat Treatment, 2019, 40(12), 68(in Chinese). 孔令宝, 周延军, 宋克兴, 等. 材料热处理学报, 2019, 40(12), 68. 47 Zuo X W, Guo R, An B L, et al. Acta Metallurgica Sinica, 2016, 52(2), 143(in Chinese). 左小伟, 郭睿, 安佰灵, 等. 金属学报, 2016, 52(2), 143. 48 Li G M, Wang E G, Zhang L, et al. Acta Metallurgica Sinica, 2010, 46(9), 1128(in Chinese). 李贵茂, 王恩刚, 张林, 等. 金属学报, 2010, 46(9), 1128. 49 Shang X, Wang E G, Zuo X W, et al. Journal of Iron and Research, 2012, 19(S1), 430. 50 Li G M. Study on solidification microstructure and in-situ deformation microstructure and properties of Cu-Ag alloy under magnetic field. Ph. D. Thesis, Northeastern University, China, 2011(in Chinese). 李贵茂. 磁场作用下Cu-Ag合金凝固组织与原位形变组织和性能的研究. 博士学位论文, 东北大学, 2011. 51 Raabe D, Mattissen D. Acta Materialia, 1999, 47(3), 769. 52 Jia S G, Liu P, Ren F Z, et al. Metals and Materials International, 2007, 13(1), 25. 53 Wu X, Wang R C, Peng C Q, et al. Materials & Design, 2019, 168, 107676. 54 Bittner F, Yin S, Kauffmann A, et al. Materials Science and Enginee-ring: A, 2014, 597, 139. 55 Zhou K, Chen W G, Feng P, et al. Journal of Alloys and Compounds, 2020, 820, 153123. 56 Wang P F, Liang M, Xu X Y, et al. Rare Metal Materials and Enginee-ring, 2020, 49, 1171. 57 Song L N, Liu J B, Huang L Y, et al. Acta Metallurgica Sinica, 2012, 48(12), 1459(in Chinese). 宋鲁南, 刘嘉斌, 黄六一, 等. 金属学报, 2012, 48(12), 1459. 58 Wu X, Wang R C, Peng C Q, et al. Materials Science and Engineering: A, 2019, 739, 357. 59 Kurz W, Fisher D J. Fundamentals of solidification, Trans Tcch Publications, Switzerland, 1989, pp. 69. 60 Liu J B, Zhang L, Meng L. Materials Science and Engineering: A, 2008, 498(1-2), 392. 61 An B L, Xin Y, Niu R M, et al. Materials Letters, 2019, 252, 207. 62 Zhang X, Shu S P, Bellon P, et al. Acta Materialia, 2015, 97, 348. 63 Li R, Zuo X W, Wang E G. Journal of Alloys and Compounds, 2019, 773, 121. 64 Chang L L, Jia B, Li S L, et al. Journal of Rare Earths, 2017, 35(10), 1029. 65 Bao G H, Xu Y Q, Huang L Y, et al. Materials Research Letters, 2015, 4(1), 37. 66 Liu J B, Zhang L, Zeng Y W, et al. Scripta Materialia, 2011, 64(7), 665. 67 Hong S I, Hill M A. Acta Materialia, 1998, 46(12), 4111. 68 Yang F, Meng L, Zhang L. Acta Materialia Sinica, 2004, 40(8), 891. 69 Hong S I, Hill M A. Materials Science and Engineering A, 1999, 264, 151. 70 Bonvalet M, Sauvage X, Blavette D. Acta Materialia, 2019, 164, 454. 71 Wang W B, Zhang L, Luo C, et al. Materials Science Forum, 2015, 817, 545. 72 Nestorović S, Marković I, Marković D. Materials & Design, 2010, 31(3), 1644. 73 Zhang L, Guo X, Li Z Y, et al. Metallurgical and Materials Transactions A, 2020, 51, 6727. 74 Hangen U, Raabe D. Acta Materialia, 1995, 43(11), 4075. 75 Han K, Embury J D, Sims J R, et al. Materials Science and Engineering A, 1999, 267, 99. 76 Zhang L, Han K, Man T N, et al. Journal of Iron and Steel Research International, 2016, 23(7), 638. 77 Han K, Vasquez A A, Xin Y, et al. Acta Materialia, 2003, 51(3), 767.