Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21040152-6    https://doi.org/10.11896/cldb.21040152
  金属与金属基复合材料 |
Cu-Ag高强高导合金的研究现状与进展
张道琦1,2, 张林1,*, 郭晓1,2, 王恩刚1,*
1 东北大学材料电磁过程研究教育部重点实验室,沈阳 110819
2 东北大学冶金学院,沈阳 110819
Research Status and Progress of Cu-Ag High-strength and High-conductivity Alloys
ZHANG Daoqi1,2, ZHANG Lin1,*, GUO Xiao1,2, WANG Engang1,*
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2 School of Metallurgy, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 9054KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现代能源、电力、机械、电子信息等产业的发展需要用到导电和力学性能优良的Cu基合金。具有弥散第二增强相分布的Cu基合金具有高导电性和高强度,可用于脉冲强磁场、高铁接触用线和航天等高科技领域。目前被广泛研究的Cu基二元合金有Cu-Nb、Cu-Ag、Cu-Cr和Cu-Zr等。其中Cu-Ag合金相比其他Cu基二元合金具有更高的导电性能和力学综合性能。
然而,Ag属于贵金属,价格昂贵,Cu-Ag合金制备工艺流程长,成本高。因此,近年来寻找新型合金制备方法和与Cu-Ag合金相匹配的合金化元素成为了研究热点,研究者们不断尝试在合金中加入第三组元,从而降低合金中的Ag含量,提高合金的综合性能;同时,改进形变过程中的热处理工艺也对Cu基合金性能提升取得了一定效果。
研究表明,增加Ag含量有利于合金强度的增加。采用定向凝固与冷变形相结合的制备工艺,可以大幅提高合金强度;采用水平连铸工艺,或在凝固过程中施加直流、交流磁场,均可使制备的Cu-Ag合金导电性能提高。目前,在Cu-Ag合金研究中加入的第三组元有Nb、Cr、Zr、W、Fe、稀土元素。富Nb相有良好的延展性,在拉拔过程中很容易演变为纤维,提高了合金强度;Zr、W元素能够抑制Ag的析出,从而提高合金的强度;Cr元素能使合金的耐磨性能提升2~3倍,但富Cr相的延展性相对较差。
本文归纳了Cu-Ag高强高导合金的研究进展,分析了提高Cu-Ag二元合金和Cu-Ag系三元合金性能的方法以及面临的问题,以期为制备综合性能优良的Cu-Ag合金提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张道琦
张林
郭晓
王恩刚
关键词:  Cu-Ag合金  导电性能  抗拉强度  凝固  形变  热处理    
Abstract: Cu-Based alloys with excellent conductivity and mechanical properties have a wide range of applications in the development of modern energy, electric power, machinery, electronic devices, and other industries. Cu-based alloys reinforced by the dispersion of a second phase have high strength and high conductivity, and these can be used in high-tech fields such as pulsed high magnetic field, high-speed rail contact wire, and aerospace technical field. Cu-based binary alloys such as Cu-Nb, Cu-Ag, Cu-Cr and Cu-Zr have been widely studied.The Cu-Ag alloy exhibits superior electrical conductivity and mechanical properties compared to other binary alloys based on copper.
As a noble metal, Ag is expensive, and the preparation of Cu-Ag alloys is complicated and expensive. Therefore, in recent years, it has become a popular research topic to design new fabrication methods and alloying elements of Cu-Ag alloys. Scholars have attempted to add some third components to Cu-Ag alloys, which can not only reduce Ag content but also improve comprehensive properties of the alloy. Moreover, the properties of the alloy have been improved by optimizing the heat treatment process in the deformation stages.
Results show that alloy strength increases with increasing Ag content. The strength of the alloy can also be improved by combining directional solidification and cold deformation. Some studies have shown that electrical conductivity can be improved by the horizontal continuous casting process or by applying DC and AC magnetic fields during solidification. Currently, Nb, Cr, Zr, W, Fe, and rare-earth elements are used in the synthesis of Cu-Ag alloys. The Nb-rich phase has good ductility and can easily form fibers in the drawing process, leading to increased strength. Zr and W can inhibit the precipitation of Ag, improving alloy strength. Cr can improve the wear resistance of the alloy by approximately 2—3 times;however, ductility of the Cr-rich phase is relatively poor.
This paper summarizes recent results in high-strength and high-conductivity Cu-Ag alloys and analyzes methods to improve the properties of Cu-Ag binary alloys and Cu-Ag ternary alloys. In order to facilitate the preparation of Cu-Ag alloys with superior comprehensive properties, this paper aims to provide a valuable reference.
Key words:  Cu-Ag alloy    electric conductivity    tensile strength    solidification    deformation    heat treatment
发布日期:  2023-07-10
ZTFLH:  TG146.1  
  TG156.5  
  TG359  
基金资助: 国家重点研发计划(2017YFE0107900);国家自然科学基金 (51674083);国家111计划2.0(BP0719037)
通讯作者:  *张林,东北大学特聘研究员、博士研究生导师。2001年本科毕业于东北大学,2004年、2008年于东北大学分别获得硕士和博士学位。2004年开始在东北大学工作,2011年被聘为副教授。2011—2012年在美国国家强磁场实验室访学。2021年成为东北大学特聘研究员。现主要从事高强高导合金、难混溶合金、储能材料与纳米磁性材料的制备技术研究。近年来,在金属材料制备领域发表论文60余篇,其中以第一作者发表SCI论文17篇。zhanglin@epm.neu.edu.cn;
王恩刚,东北大学二级教授、博士研究生导师。1984年毕业于西安交通大学机械工程系铸造专业,获学士学位;1987年毕业于哈尔滨工业大学金属材料及工艺系铸造专业,获硕士学位;1998年毕业于东北大学热能工程系热能专业,获博士学位。中国金属学会电磁冶金与强磁场材料科学分会主任委员,国际EPM大会学术委员会委员,国务院政府特殊津贴获得者,入选辽宁省百千万人才工程百人层次,沈阳市高层次人才。高等学校学科创新引智基地(111计划2.0)—“电磁冶金与强磁场材料科学与技术创新引智基地”负责人。 长期从事电磁冶金理论与连铸技术、金属凝固与电磁调控理论与技术、高强高导铜合金形变加工、强磁场材料科学等学科领域研究。主持完成国家重点研发计划、国家自然科学基金重点项目和面上项目、国家111计划(1.0和2.0)、国家863计划等科研项目。获国家科学技术进步一等奖,中国冶金科学技术一等奖等科技奖励。获中国、欧洲、美国、日本等国家发明专利30余项。在JMST、MSEA、JAC、MD、MC、IJHMT、MMTA、MMTB、ISIJ等期刊发表SCI收录论文100余篇。egwang@mail.neu.edu.cn   
作者简介:  张道琦,2018年7月毕业于太原科技大学,获得工学学士学位。现为东北大学冶金学院硕士研究生,在张林特聘研究员的指导下进行研究。目前主要研究领域为Cu-Ag高强高导合金的先进制造技术。
引用本文:    
张道琦, 张林, 郭晓, 王恩刚. Cu-Ag高强高导合金的研究现状与进展[J]. 材料导报, 2023, 37(13): 21040152-6.
ZHANG Daoqi, ZHANG Lin, GUO Xiao, WANG Engang. Research Status and Progress of Cu-Ag High-strength and High-conductivity Alloys. Materials Reports, 2023, 37(13): 21040152-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040152  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21040152
1 Embury J D, Han K. Current Opinion in Solid State and Materials Sience, 1998, 3(3), 304.
2 Fuchs G, Krabbes G, Schätzle P, et al. Physica B Physics of Condensed Matter, 2001, 294(4), 398.
3 Freudenberger J, Kozlova N, Gaganov A, et al. Cryogenics London, 2006, 46(10), 724.
4 Grünberger W, Heilmaier M, Schultz L. Physica B Physics of Condensed Matter, 2001, 294(1), 643.
5 Sakai Y, Inoue K, Maeda H. IEEE Transactions on Magnetics, 1994, 30(4), 2114.
6 Swenson C A, Marshall W S, Gavrilin A V, et al. Physica B Condensed Matter, 2004, 346(1), 561.
7 Bacon J L, Ammerman C N, Coe H, et al. IEEE Transactions on Applied Superconductivity, 2003, 12(1), 695.
8 Sakai Y, Hibaru T, Miura K, et al. Materials Research Society, 2016, 1(17), 1137.
9 Dong Y, Wang X K, Xie Y H, et al. Journal of Alloys and Compounds, 2020, 812, 152112.
10 Zawrah M E, Mohammed A T, Fardous S, et al. Ceramics International, 2017, 43(15), 12698.
11 Aghamiri S M S, Oono N, Ukai S, et al. Journal of Alloys and Compounds, 2019, 783, 674.
12 Neikov O D, Naboychenko S S, Murashova I B. Hand-book of non-ferrous metal powders, Oxford University Press, UK, 2019, pp. 571.
13 Zhao Z, Xiao Z, Li Z, et al. Journal of Materials Engineering and Performance, 2017, 26(11), 5641.
14 Liu Y C, Kondo S, Yu H, et al. Materials Transactions, 2020, 61(5), 955.
15 Ding J, Zhao N Q, Shi C S, et al. Journal of Alloys and Compounds, 2006, 425(1-2), 390.
16 Botcharova E, Freudenberger J, Schultz L. Acta Materialia, 2006, 54(12), 3333.
17 Verhoeven J D, Spitzig W A, Schmidt F A, et al. Journal of Materials Science, 1989, 24(3), 1015.
18 Wang E G, Qu L, Zuo X W. Revue De Metallurgie-Cahiers D Informations Techniques, 2013, 110(4), 289.
19 Quelennec X, Menand A, LeBreton J M, et al. Philosophical Magazine, 2010, 90(9), 1179.
20 Islamgaliev R K, Nesterov K M, Champion Y C, et al. Journal of Applied Physics, 2014, 115(19), 194301.
21 Patra S, Gouthama, Mondal K. Properties in Natural Science, 2014, 24(6), 608.
22 Tian Y Z, Zhang Z F. Scripta Materialia, 2012, 66(2), 65.
23 Tian Y Z, Zhang Z F. Scripta Materialia, 2013, 68(7), 542.
24 Bao G H, Chen C X, Huang L Y, et al. Materials Science and Enginee-ring:A, 2016, 655, 86.
25 Huang J S, Yao D W, Meng L. Metals and Materials International, 2013, 19(2), 225.
26 Jia S G, Zheng M S, Liu P, et al. Materials Science and Engineering:A, 2006, 419(1), 8.
27 Zhang L, Meng L. Materials Science and Technology, 2003, 19(1), 75.
28 Raabe D, Mattissen D. Acta Materialia, 1998, 49(16), 5973.
29 Raabe D, Ohsaki S, Hono K. Acta Materialia, 2009, 57(17), 5254.
30 Lyubimova J, Freudenberger J, Mickel C, et al. Materials Science and Engineering:A, 2010, 527(3), 606.
31 Piyawit W, Xu W Z, Mathaudhu S N, et al. Materials Science and Engineering:A, 2014, 610, 85.
32 Zhao H, Fu H, Xie M, et al. Vacuum, 2018, 154, 190.
33 Rozhnov A B, Pantsyrny V I, Kraynev A V, et al. International Journal of Fatigue, 2019, 128, 105188.
34 Feng J, Song K X, Liang S H, et al. Vacuum, 2020, 175, 109295.
35 Zou M, Lu D P, Fu Q F, et al. Vacuum, 2019, 167, 54.
36 Meng L, Wang M, Liu X, et al. Applied Physics A, 2016, 122(4), 387.
37 Sakai Y, Inoue K, Maeda H. Acta Metallurgica et Materialia, 1995, 43(4), 1517.
38 Guo S L, Liu S P, Liu J C, et al. Journal of Materials Engineering and Performance, 2019, 28(11), 6809.
39 Zhao C C, Zuo X W, Wang E G, et al. Materials Science and Enginee-ring: A, 2016, 652, 296.
40 Han K, Toplosky V J, Goddard R, et al. IEEE Transactions on Applied Superconductivity, 2012, 22(3), 6900204.
41 Liang M, Wang P F, Xu X Y, et al. IEEE Transactions on Applied Superconductivity, 2020, 30(4), 1.
42 Liu J B, Meng L, Zeng Y W, et al. Materials Science and Engineering: A, 2006, 435-436, 237.
43 Liu J B, Zhang L, Dong A P, et al. Materials Science and Engineering: A, 2012, 532, 331.
44 Zuo X W, Guo R, Zhao C C, et al. Journal of Alloys and Compounds, 2016, 676, 46.
45 Zhu L Y, Li L, Ji G L, et al. Special Casting & Nonferrous Alloys, 2017, 37(12), 1357(in Chinese).
朱丽媛, 李雷, 冀国良, 等. 特种铸造及有色合金, 2017, 37(12), 1357.
46 Kong L B, Zhou Y J, Song K X, et al. Transactions of Mate Rials and Heat Treatment, 2019, 40(12), 68(in Chinese).
孔令宝, 周延军, 宋克兴, 等. 材料热处理学报, 2019, 40(12), 68.
47 Zuo X W, Guo R, An B L, et al. Acta Metallurgica Sinica, 2016, 52(2), 143(in Chinese).
左小伟, 郭睿, 安佰灵, 等. 金属学报, 2016, 52(2), 143.
48 Li G M, Wang E G, Zhang L, et al. Acta Metallurgica Sinica, 2010, 46(9), 1128(in Chinese).
李贵茂, 王恩刚, 张林, 等. 金属学报, 2010, 46(9), 1128.
49 Shang X, Wang E G, Zuo X W, et al. Journal of Iron and Research, 2012, 19(S1), 430.
50 Li G M. Study on solidification microstructure and in-situ deformation microstructure and properties of Cu-Ag alloy under magnetic field. Ph. D. Thesis, Northeastern University, China, 2011(in Chinese).
李贵茂. 磁场作用下Cu-Ag合金凝固组织与原位形变组织和性能的研究. 博士学位论文, 东北大学, 2011.
51 Raabe D, Mattissen D. Acta Materialia, 1999, 47(3), 769.
52 Jia S G, Liu P, Ren F Z, et al. Metals and Materials International, 2007, 13(1), 25.
53 Wu X, Wang R C, Peng C Q, et al. Materials & Design, 2019, 168, 107676.
54 Bittner F, Yin S, Kauffmann A, et al. Materials Science and Enginee-ring: A, 2014, 597, 139.
55 Zhou K, Chen W G, Feng P, et al. Journal of Alloys and Compounds, 2020, 820, 153123.
56 Wang P F, Liang M, Xu X Y, et al. Rare Metal Materials and Enginee-ring, 2020, 49, 1171.
57 Song L N, Liu J B, Huang L Y, et al. Acta Metallurgica Sinica, 2012, 48(12), 1459(in Chinese).
宋鲁南, 刘嘉斌, 黄六一, 等. 金属学报, 2012, 48(12), 1459.
58 Wu X, Wang R C, Peng C Q, et al. Materials Science and Engineering: A, 2019, 739, 357.
59 Kurz W, Fisher D J. Fundamentals of solidification, Trans Tcch Publications, Switzerland, 1989, pp. 69.
60 Liu J B, Zhang L, Meng L. Materials Science and Engineering: A, 2008, 498(1-2), 392.
61 An B L, Xin Y, Niu R M, et al. Materials Letters, 2019, 252, 207.
62 Zhang X, Shu S P, Bellon P, et al. Acta Materialia, 2015, 97, 348.
63 Li R, Zuo X W, Wang E G. Journal of Alloys and Compounds, 2019, 773, 121.
64 Chang L L, Jia B, Li S L, et al. Journal of Rare Earths, 2017, 35(10), 1029.
65 Bao G H, Xu Y Q, Huang L Y, et al. Materials Research Letters, 2015, 4(1), 37.
66 Liu J B, Zhang L, Zeng Y W, et al. Scripta Materialia, 2011, 64(7), 665.
67 Hong S I, Hill M A. Acta Materialia, 1998, 46(12), 4111.
68 Yang F, Meng L, Zhang L. Acta Materialia Sinica, 2004, 40(8), 891.
69 Hong S I, Hill M A. Materials Science and Engineering A, 1999, 264, 151.
70 Bonvalet M, Sauvage X, Blavette D. Acta Materialia, 2019, 164, 454.
71 Wang W B, Zhang L, Luo C, et al. Materials Science Forum, 2015, 817, 545.
72 Nestorović S, Marković I, Marković D. Materials & Design, 2010, 31(3), 1644.
73 Zhang L, Guo X, Li Z Y, et al. Metallurgical and Materials Transactions A, 2020, 51, 6727.
74 Hangen U, Raabe D. Acta Materialia, 1995, 43(11), 4075.
75 Han K, Embury J D, Sims J R, et al. Materials Science and Engineering A, 1999, 267, 99.
76 Zhang L, Han K, Man T N, et al. Journal of Iron and Steel Research International, 2016, 23(7), 638.
77 Han K, Vasquez A A, Xin Y, et al. Acta Materialia, 2003, 51(3), 767.
[1] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[2] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[3] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[4] 万伟, 朱永昌, 张行泉, 崔竹, 杨德博, 焦云杰, 霍冀川, 孟保健. MoO3含量对钙钛锆石基硼硅酸盐玻璃陶瓷的影响[J]. 材料导报, 2023, 37(13): 21080150-6.
[5] 周涵, 刘亚, 吴长军, 王建华, 苏旭平. 熔体深过冷过共晶铝硅合金的凝固组织研究[J]. 材料导报, 2023, 37(12): 21100123-6.
[6] 刘灵, 杨伟, 吴宗锴, 徐勇, 余欢. 深冷处理对快冷Mg-6Al-1Y合金等温时效析出的影响[J]. 材料导报, 2023, 37(12): 21070188-5.
[7] 朱慧慧, 徐允良, 胡朝帅, 褚宏宇, 朱亚明, 程俊霞, 赵雪飞. 芳香类重质油基针状焦的制备及表征[J]. 材料导报, 2023, 37(11): 21070270-5.
[8] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[9] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[10] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[11] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[12] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[13] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[14] 王妍, 崔春娟, 张凯, 邓力, 刘薇, 刘跃, 赵亚男, 武重洋. 定向凝固金属间化合物的研究进展[J]. 材料导报, 2022, 36(24): 20100245-8.
[15] 徐英卓, 王秀凯, 常麟晖, 陈步明, 黄惠, 何亚鹏, 郭忠诚. 热处理对大变形量Zn-1.65Cu-0.15Ti合金的组织和性能的影响[J]. 材料导报, 2022, 36(23): 21030294-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed