Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 20100245-8    https://doi.org/10.11896/cldb.20100245
  金属与金属基复合材料 |
定向凝固金属间化合物的研究进展
王妍1, 崔春娟1,2,*, 张凯1, 邓力1, 刘薇1, 刘跃1, 赵亚男1, 武重洋1
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
Research Progress in Directionally Solidified Intermetallic Compounds
WANG Yan1, CUI Chunjuan1,2,*, ZHANG Kai1, DENG Li1, LIU Wei1, LIU Yue1, ZHAO Yanan1, WU Chongyang1
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an,710055, China
2 Shaanxi Province Metallurgical Engineering Technology Research Center, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 15184KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属间化合物具有高熔点、高强度、良好的抗氧化和耐腐蚀等性能,被广泛应用于航空航天、能源动力、冶金工程等方面,然而金属间化合物的室温脆性限制了其发展及应用。目前常采用热处理、合金化、机械合金化等技术手段解决金属间化合物室温脆性的问题。其中,采用定向凝固技术制备的共晶自生复合材料受到了广泛的关注,该技术通过控制凝固参数,改变材料组织和相组成来提高材料性能。本文介绍了Ni-Al系、Ti-Al系、Nb-Si系、Fe-Al系几种常见金属间化合物,简述了几种常见金属间化合物的性能及特点,总结了定向凝固Ni-Al系、Ti-Al系、Nb-Si系、Fe-Al系金属间化合物的组织特征、性能特点、应用情况,并展望了定向凝固金属间化合物未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王妍
崔春娟
张凯
邓力
刘薇
刘跃
赵亚男
武重洋
关键词:  定向凝固  金属间化合物  室温脆性  共晶自生复合材料    
Abstract: Intermetallic compounds with high melting point, high strength, good oxidation resistance and corrosion resistance are widely used in aerospace, energy and power, metallurgical engineering, etc. However, the room temperature brittleness of intermetallic compounds restricts their development and practical applications. Currently, heat treatment, alloying, mechanical alloying and other technologies are used to overcome their room temperature brittleness. Among them, eutectic in-situ composite materials prepared by directional solidification technology have received extensive attention. The microstructure and phase composition of the material are changed to improve properties by controlling the solidification parameters. In this article, Ni-Al, Ti-Al, Nb-Si and Fe-Al intermetallic compounds are introduced and their performance and characteristics are described. The microstructure, properties, application, and the future development of Ni-Al, Ti-Al, Nb-Si and Fe-Al intermetallic compounds formed by directional solidification are summarized and the future development of directionally solidified intermetallic compounds is discussed.
Key words:  directional solidification    intermetallic compounds    room temperature brittleness    eutectic in-situ composite
发布日期:  2023-01-03
ZTFLH:  TG244+3  
  O782  
基金资助: 国家自然科学基金(51201121);陕西省重点研发计划重点产业创新链(群)项目(2019ZDLGY04-04);山西省科技重大专项项目(20191102006)
通讯作者:  cuichunjuan@ xauat.edu.cn   
作者简介:  王妍,2018年6月本科毕业于西安航空学院材料工程学院。目前是西安建筑科技大学冶金工程学院的硕士研究生。主要研究金属材料的定向凝固技术。
崔春娟,西安建筑科技大学冶金工程学院教授、博士研究生导师。2002年、2008年在西北工业大学材料加工工程专业分别取得硕士和博士学位,2012年至2013年在美国肯塔基大学的化学与材料系做访问学者。发表SCI和EI期刊论文共50余篇。出版了金属凝固理论与应用技术的学术专著1项。主要从事金属基复合材料的凝固技术与理论研究。
引用本文:    
王妍, 崔春娟, 张凯, 邓力, 刘薇, 刘跃, 赵亚男, 武重洋. 定向凝固金属间化合物的研究进展[J]. 材料导报, 2022, 36(24): 20100245-8.
WANG Yan, CUI Chunjuan, ZHANG Kai, DENG Li, LIU Wei, LIU Yue, ZHAO Yanan, WU Chongyang. Research Progress in Directionally Solidified Intermetallic Compounds. Materials Reports, 2022, 36(24): 20100245-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100245  或          http://www.mater-rep.com/CN/Y2022/V36/I24/20100245
1 Fu H Z. Directional solidification and processing of advanced materials, Science Press, China, 2008 (in Chinese).
傅恒志, 先进材料定向凝固, 科学出版社, 2008.
2 Tang G X, Mao W M, Liu Y F. China Foundry Machinery & Technology, 2007(2), 11 (in Chinese).
汤国兴, 毛卫民, 刘永峰. 中国铸造装备与技术, 2007(2), 11.
3 Li Y, Dai J H, Song Y. Computational Materials Science, DOI:10. 1016/j. commatsci. 2020. 109756.
4 Lu Y, Watanabe M, Miyata R, et al. Materials Science and Engineering A, DOI:10. 1016/j. msea. 2020. 139523.
5 Cui C J, Wen Y G, Yang M, et al. Materials Protection, 2017, 50(9), 82(in Chinese).
崔春娟, 问亚岗, 杨猛, 等. 材料保护, 2017, 50(9), 82.
6 Wen Y G, Cui C J, Tian L L, et al. Materials Reports A: Reviw Papers, 2016, 30(3), 116 (in Chinese).
问亚岗, 崔春娟, 田露露, 等. 材料导报:综述篇, 2016, 30(3), 116.
7 Gao Y M. Principles of metal solidification, Xi'an Jiaotong University Press, China, 2010(in Chinese).
高义民, 金属凝固原理. 西安交通大学出版社, 2010.
8 Liu D R, Lu H Y, Guo E J. Journal of Harbin University of Science and Technology, 2017, 22(6),102(in Chinese).
刘东戎, 芦海洋, 郭二军. 哈尔滨理工大学学报, 2017, 22(6), 102.
9 Chen H, Guo X F, Zhang J X. The World of Building Materials, 2014(z1), 1(in Chinese).
陈昊, 郭学锋, 张建新. 建材世界, 2014(z1), 1.
10 Zhong Y. Effects of temperature gradient on the liquid-solid interfacial reaction and grain orientation of micro interconnects. Ph. D. Thesis, Dalian University of Technology, China, 2018(in Chinese).
钟毅. 温度梯度对微焊点界面反应及晶粒取向的影响. 博士学位论文, 大连理工大学, 2018.
11 Gu C, Ridgeway C D, Moodispaw M P, et al. Journal of Materials Processing Technology, DOI:10. 1016/j. jmatprotec. 2020. 116829.
12 Yan X W, Guo X, Liu Y L. Transactions of Nonferrous Metals Society of China, 2019, 29(2), 338.
13 Deng C, Long J, Zheng Z B, et al. Special Casting & Nonferrous Alloys, 2021, 41(3), 368(in Chinese).
邓超, 龙骏, 郑志斌, 等. 特种铸造及有色合金, 2021, 41(3), 368.
14 Lu S L, Xiao F R, Zhang S J. Applied Thermal Engineering, 2014, 73(1), 512.
15 Bai Y P, Luo J J, Li J P, et al. Surface Technology, 2019, 48(8), 144(in Chinese).
白亚平, 罗佳佳, 李建平, 等. 表面技术, 2019, 48(8), 144.
16 Gong S K, Shang Y, Zhang J, et al. Acta Metallurgica Sinica, 2019, 55(9), 1067(in Chinese).
宫声凯, 尚勇, 张继, 等. 金属学报, 2019, 55(9), 1067.
17 Ma X W, Zhang J F, Hao W W, et al. Rare Metal Materials and Engineering, 2018, 47(11), 3528(in Chinese).
马雪微, 张建飞, 郝文纬, 等. 稀有金属材料与工程, 2018, 47(11), 3528.
18 Dong Y L. Microstructure evolution and phase selection in the initial transition zone of directionally solidified NiAl-V eutectic alloys. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2020(in Chinese).
董悦雷. 定向凝固NiAl-V系共晶合金初始过渡区组织演化及相选择. 硕士学位论文, 内蒙古科技大学, 2020.
19 Gao J J, Zhao Z L, Wei L F, et al. Rare Metals, 2020, 39(10), 1174.
20 Zhang J F, Xu P F, Dong Y L, et al. Rare Metal Materials and Enginee-ring, 2019, 48(11), 3514.
21 Guo J B, Zhong H, Liu Z P, et al. Rare Metal Materials and Enginee-ring, 2019, 48(4), 1116.
22 Shang Z, Shen J, Wang L, et al. Intermetallics. 2015, 57, 25.
23 Liu H, Xuan W D, Xie X L, et al. Materials Science and Engineering A, 2016, 678, 243.
24 Hu L, Hu W, Gottstein G. Materials Science and Engineering A, 2012, 539, 211.
25 Wang G T, Ding H S, Chen R R, et al. Acta Metallurgica Sinica, 2017, 53(11), 1461(in Chinese).
王国田, 丁宏升, 陈瑞润, 等. 金属学报, 2017, 53(11), 1461.
26 Zhang S Q, Yang Z X, Jiang R S, et al. Chinese Journal of Aeronautics, 2021, 34(1), 438.
27 Zhang H J. Research on the mechanical properties and constitutive equations of alloy IC10. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2009(in Chinese).
张宏建. IC10合金的力学性能试验及本构模型研究. 博士学位论文, 南京航空航天大学, 2009.
28 Li W. Microstructure and fatigue properties of cold crucible directional solidified TiAl alloy. Master's Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
李伟. 冷坩埚定向凝固TiAl合金组织与疲劳性能. 硕士学位论文, 哈尔滨工业大学, 2019.
29 Wang Q, Zeng L, Ding H, et al. Intermetallics, DOI:10.1016/j.intermet.2019.106587.
30 Ding H, Wang Y, Chen R, et al. Materials and Design, 2015, 86, 670.
31 Xiao X L. Study on microstructure and properties of Ti-45Al-2Nb-2Mn directionally solidified by electromagnetic cold crucible. Master's Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
肖星亮. 冷坩埚定向凝固Ti-45Al-2Nb-2Mn组织及性能研究. 硕士学位论文, 哈尔滨工业大学, 2017.
32 Lu Z L, Cao J W, Bai S Z, et al. Journal of Alloys and Compounds, 2015, 633, 280.
33 Wang Q, Chen R, Yang Y, et al. Intermetallics, 2018, 100, 104.
34 Zheng S, Shen J, Shang Z, et al. Materials Science and Engineering, DOI:10. 1016/j. msea. 2020. 139962
35 Chen R R, Ding H S, Yang J R. et al. Transactions of Nonferrous Metals Society of China, 2012, 22(3), 647.
36 Xing M. Microstructure and high temperature mechanical properties of cold crucible directionally solidified TiAl alloy. Master's Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
邢明. 冷坩埚定向凝固TiAl合金组织与高温力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
37 Kuz'mina N A, Svetlov I L, Neiman A V. Russian Metallurgy, 2018,3, 276.
38 Guo Y L, He J Y, Li Z M, et al. Corrosion Science: The Journal on Environmental Degradation of Materials and its Control, 2020, 163, 1.
39 Fang X, Guo X P, Qiao Y Q. Intermetallics, DOI:10. 1016/j. intermet. 2020. 106798.
40 Wang N, Jia L N, Kong B, et al. International Journal of Refractory Metals and Hard Materials, DOI:10. 1016/j. ijrmhm. 2017. 11. 001.
41 Fang X, Guo X P, Qiao Y Q. Journal of Alloys and Compounds, DOI:10. 1016/j. jallcom. 2019. 153023.
42 Fang X, Guo X P, Qiao Y Q. Intermetallics, DOI:10. 1016/j. intermet. 2019. 106481.
43 Jia L N, Weng J F, Li Z, et al. Materials Science and Engineering A, 2015, 623, 32.
44 Wang J Y, Jia L N, Ma L M, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(10), 2874.
45 Ye C, Jia L, Jin Z, et al. Journal of Alloys and Compounds, DOI:10. 1016/j. jallcom. 2020. 156123.
46 Li X F, Guo X P. Acta Metallurgica Sinica, 2013, 49(7), 853(in Chinese).
李小飞, 郭喜平. 金属学报, 2013, 49(7), 853.
47 Yan J J, Guo X P. Rare Metal Materials and Engineering, 2017, 46(1), 1.
48 Fang X, Guo X, Qiao Y. Journal of Alloys and Compounds, DOI:10. 1016/j.jallcom.2019.153023.
49 Guo B H, Guo X P. Materials Science and Engineering A, 2014, 617, 39.
50 Guo B H, Guo X P. Rare Metal Materials and Engineering, 2013, 42(7), 1387(in Chinese).
郭宝会, 郭喜平. 稀有金属材料与工程, 2013, 42(7), 1387.
51 Cui C J, Wen Y G, Yang M, et al. Materials Protection, 2017, 50(9), 82(in Chinese).
崔春娟, 问亚岗, 杨猛. 材料保护, 2017, 50(9), 82.
52 Huang G Q, Zhang G K, Luo C Y, et al. Materials Reports A:Review Papers, 2018, 32(6), 1878(in Chinese).
黄广棋, 张桂凯, 罗朝以. 材料导报:综述篇, 2018, 32(6), 1878.
53 Golovin I, Divinski S, Cízek J, et al. Acta Materialia, 2005, 53(9), 2581.
54 Stein F, He C, Prymak O, et al. Intermetallics, 2015, 59, 43.
55 Morris D G, Munoz Morris M A. Materials Science and Engineering A, 2007, 462(1-2), 45.
56 Morris D G, Munoz Morris M, Baudin C. Acta Materialia, 2004, 52(9), 2827.
57 Falat L, Schneider A, Sauthoff G, et al. Intermetallics, 2005, 13(12), 1256.
58 Milenkovic S, Palm M. Intermetallics, 2008, 16(10), 1212.
59 Yang G, Milenkovic S. Intermetallics, 2014, 55, 129.
60 Verin A S, Verin M A. Anti-Corrosion Methods and Materials, 2001, 48(5), 298.
61 Cui C J, Wang C, Wang P, et al. Journal of Materials Science and Technology, 2020, 42(7), 63.
62 Cui C J, Lai Y Y, Liu W, et al. Materials Science and Engineering A, DOI:10.1016/j.msea.2019.138257.
63 Cui C J, Wang S Y, Yang M, et al. Journal of Wuhan University of Technology(Materials Science), 2019, 34(3), 656.
64 Cui C J, Ren C Q, Liu Y T, et al. Journal of Alloys and Compounds, 2019, 785, 62.
[1] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[2] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[3] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[4] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[5] 王优, 邓楠, 佟振峰, 周张健. 铁铝金属间化合物及其涂层制备的研究进展[J]. 材料导报, 2021, 35(21): 21221-21227.
[6] 秦丰, 李睿, 张春波, 周军, 赵衍华. 铝/钢异种金属轴向摩擦焊研究现状[J]. 材料导报, 2021, 35(21): 21228-21235.
[7] 吴正刚, 李熙, 李忠涛. 高熵合金应用于异种金属焊接的研究现状及发展趋势[J]. 材料导报, 2021, 35(17): 17031-17036.
[8] 樊丁, 李永鹏, 武利建, 黄健康, 刘世恩, 刘玉龙. 超声振动对铝/铜等离子弧熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2021, 35(16): 16115-16119.
[9] 王龙, 胡德安, 陈益平, 程东海, 江淑园. 铝/铜异种材料交变磁场辅助电弧熔钎焊接头组织和性能[J]. 材料导报, 2021, 35(12): 12119-12122.
[10] 蒋健博, 黄以平, 李少林, 刘海浪, 彭治国, 谭毅. 电子束诱导定向凝固对硅中Fe杂质分凝的影响[J]. 材料导报, 2020, 34(Z2): 173-176.
[11] 李鑫, 谢辉, 杨宾, 李双明. Mg2(Si,Sn)基热电材料研究进展[J]. 材料导报, 2020, 34(Z1): 43-47.
[12] 冉小杰, 周露, 黄福祥, 曾利娟. Cu/Al界面研究进展[J]. 材料导报, 2020, 34(Z1): 366-369.
[13] 刘国平, 王渠东, 蒋海燕. 铜/铝双金属复合材料研究新进展[J]. 材料导报, 2020, 34(7): 7115-7122.
[14] 肖华强, 陈禹伽, 陈维平, 何佳容, 赵思皓. 材料在铝液中熔蚀-磨损行为的研究进展[J]. 材料导报, 2020, 34(7): 7123-7129.
[15] 刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed