Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 20110226-6    https://doi.org/10.11896/cldb.20110226
  无机非金属及其复合材料 |
氧还原电催化剂的研究进展
刘佳琪, 杨庆浩*
西安科技大学材料科学与工程学院,西安 710054
Research Progress in Electrocatalysts for Oxidation Reduction Reaction
LIU Jiaqi, YANG Qinghao
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 9902KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧还原反应是新能源电池、化工生产及生物电化学等高科技领域的关键过程,引起了诸多科研人员的极大关注。在燃料电池及金属-空气电池中,电池阴极传递氧离子并为氧还原反应提供场所。而氧还原反应过程存在过电位高、动力学缓慢等不足,高效阴极催化剂的开发是提高器件性能、降低其制造成本的关键。在氧还原电催化剂中,以铂为代表的贵金属是最有效的,然而其受产量及成本制约严重。过渡金属氧化物、掺杂碳等材料因较好的催化活性和电化学稳定性广受关注,关于非贵金属催化剂的研究报道也层出不穷,但相较传统Pt/C催化剂,非贵金属催化剂仍存在催化活性低和电导率小等问题,无法满足新能源电池产业化需求。因此,近年来科研工作者多采用掺杂、复合改性等渠道提高催化剂的电化学活性。本文系统地综述了近三年来氧还原电催化剂的研究进展,重点阐述了当前催化剂研究中热点材料的改性手段及相关进展。在简要介绍现阶段氧还原反应机理的基础上,讨论了氧还原电催化剂及其主要应用领域。除此之外,还给出了氧还原电催化剂体系未来的发展方向,为进一步推进其在燃料电池及金属-空气电池等领域的实际应用进程提供可行性参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘佳琪
杨庆浩
关键词:  电催化剂  氧还原反应  电催化活性  燃料电池  金属-空气电池    
Abstract: Oxygen reduction reaction has been widely studied by many researchers, especially in the fields of new energy batteries, chemicals production, and bioelectrochemistry. In fuel cells and metal-air batteries, oxygen reduction reaction sites are provided by cell cathodes to transfer oxygen ions. While its development is severely constrained by limitations as high overpotential and slow kinetics and thus the key to improve device performance and reduce manufacturing cost is to develop cost-effective cathode catalysts. Although platinum is considered to be the most effective electrocatalyst for oxygen reduction reaction, it is still severely restricted by production and cost. Transition metal oxides, doping carbon and other materials have aroused wide attentions owing to their good catalytic activity and electrochemical stability, and extensive research is also carried out on these non-noble metal catalysts. However, compared to traditional Pt/C catalysts, they still exhibit low catalytic activity and conductivity, which cannot meet the needs of industrial applications such as new energy battery. Therefore, researchers have used doping, compo-site modifying and other channels to improve their electrochemical activity characteristics. This review aims to summarize the advances on electrocatalysts for oxygen reduction reaction, with a detail about modification methods and related progress of the most popular materials on current catalyst in recent three years. The oxygen reduction reaction mechanism is briefly introduced to provide a better analysis on the electrocatalytic performance of catalysts, and catalysts as well as their main application fields are discussed. Additionally, the future trend emerging in electroca-talyst systems for oxygen reduction is presented, providing a reference for their feasibility to further promote practical applications in fuel cells and metal-air batteries.
Key words:  electrocatalyst    oxygen reduction reaction    electrocatalytic activity    fuel cell    metal-air battery
发布日期:  2023-01-03
ZTFLH:  TM911.4  
  O643.36  
基金资助: 国家自然科学基金(21204072);陕西省重点科技创新团队资助项目(2014KCT-04);陕西省重点研发计划(2017GY-133)
通讯作者:  yangxjtu@hotmail.com   
作者简介:  刘佳琪,2019年毕业于河北工业大学,获得工学学士学位,现为西安科技大学材料科学与工程学院硕士研究生,在杨庆浩副教授的指导下进行研究。目前主要从事功能材料的研究。
杨庆浩,西安科技大学材料科学与工程学院副教授、硕士研究生导师。2001—2002年在日本大阪大学应用化学专业特别研究,2009年在西安交通大学取得材料科学与工程专业博士学位。目前主要研究方向为功能材料和复合材料。发表期刊论文50余篇,其中被SCI、EI、ISTP收录30余篇;获批发明专利7项,实用新型专利3项,软件著作权3项,参与编写著作5部。
引用本文:    
刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
LIU Jiaqi, YANG Qinghao. Research Progress in Electrocatalysts for Oxidation Reduction Reaction. Materials Reports, 2022, 36(24): 20110226-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110226  或          http://www.mater-rep.com/CN/Y2022/V36/I24/20110226
1 Kulkarni A, Siahrostami S, Patel A, et al. Chemical Review, 2018, 118(5), 2302.
2 Yin F J, Liu Y, Wang S, et al. Electrochimica Acta, 2019, 313, 378.
3 Han C L, Chen Z Q. Applied Surface Science, 2020, 511, 145382.
4 Kang Y S, Jung J Y, Choi D, et al. ACS Applied Materials & Interfaces, 2020, 12(14), 16286.
5 Valentín B M, Enrique H, Juan M F. Chinese Journal of Catalysis, 2020, 41(5), 732.
6 Pang Y, Wu C R, Chen S W, et al. Materials Reports, 2019, 33(S1), 41 (in Chinese).
潘云, 吴承仁, 陈绍维, 等. 材料导报, 2019, 33(S1), 41.
7 Wang Y, Wang D S, Li Y D. SmartMat, 2021, 2, 56.
8 Lian J, Zhao J Y, Wang X M. Acta Metallurgica Sinica, 2021, 34(7), 885.
9 Guo J N, Xiang Z H. CIESC Journal, 2021, 72(1), 384(in Chinese).
郭佳宁, 向中华. 化工学报, 2021, 72(1), 384.
10 Wang Y, Wei Z D. Journal of Electrochemistry, 2018, 24(5), 427(in Chinese).
王尧, 魏子栋. 电化学, 2018, 24(5), 427.
11 Huang Y X. Public Communication of Science & Technology, 2019, 11(4), 192(in Chinese).
黄忆欣. 科技传播, 2019, 11(4), 192.
12 Zhang X K, Liu S M, Wang E D, et al. Journal of Functional Materials and Devices, 2021, 27(1), 36(in Chinese).
张小可, 刘世民, 王二东, 等. 功能材料与器件学报, 2021, 27(1), 36.
13 Zhou F, Yan Y Z, Guan S M, et al. International Journal of Energy Research, 2020, 44(13), 10155.
14 Jauhar A M, Ma Z, Xiao M L, et al. Journal of Power Sources, 2020, 473, 228607.
15 Li Y, Wang F, Zhu H. Journal of Materials Science, 2020, 55, 11241.
16 Li J H, You S J, Liu M Y, et al. Applied Catalysis B: Environmental, 2020, 265, 118574.
17 Tian K, Zhang L, Sun X D. Chemical Engineering Design Communications, 2020, 46(8), 113(in Chinese).
田琨, 张乐, 孙晓东. 化工设计通讯, 2020, 46(8), 113.
18 Olli S, Rachel B, Saxelin S, et al. International Journal of Hydrogen Energy, 2020, 45(38), 19121.
19 Güneş S, Güldür F Ç. Chemical Engineering Communications, 2020, 207(7).
20 Sakthivel M, Drillet J F. Applied Catalysis B: Environmental, 2018, 231, 62.
21 Naik K M, Higuchi E, Inoue H. Journal of Power Sources, 2020, 455, 227972.
22 Wang W C, Li X, He T O, et al. Nano Letters, 2019, 19(3), 1743.
23 Swami A, Patil I, Lokanathan M, et al. ChemistrySelect, 2020, 5(12),3486.
24 Deng X T, Yin S F, Sun M, et al. International Journal of Hydrogen Energy, 2020, 45(33), 16482.
25 Keisar O, Yair E E, Alfi Y, et al. Journal of Power Sources, 2020, 450, 227545.
26 Miao F, Gao M M, Yu X, et al. Electrochemistry Communications, 2020, 113, 106687.
27 Yang G W, Yang T F, Xiao G, et al. Acta Energiae Solaris Sinica, 2020, 41(1), 302(in Chinese).
杨光伟, 杨天锋, 肖刚, 等. 太阳能学报, 2020, 41(1), 302.
28 Wang C C, Yu Z, Wang X T, et al. International Journal of Hydrogen Energy, 2018, 43, 18992.
29 Dong J, Yang Q H, Zhao Q L, et al. Functional Materials Letters, 2020, 13(2), 8.
30 Huang Z X, Li G Z, Huang Y L, et al. Journal of Power Sources, 2020, 448, 227385.
31 Tian H, Zeng L M, Huang Y F, et al. Nano-Micro Letters, 2020, 12(1), 1276.
32 Sreekanth T V M, Nagajyothi P, Devarayapalli K C, et al. CrystEngComm, 2020, 22, 2849.
33 Tao N, Liu J, Wang B, et al. Micro & Nano Letters, 2019, 14, 665.
34 Han J X, Zhu Z Q, Sun H X, et al. New Chemical Materials, 2019, 47(11), 58(in Chinese).
韩景新, 朱照琪, 孙寒雪, 等. 化工新型材料, 2019, 47(11), 58.
35 Miao H, Wu X Y, Chen B, et al. Electrochimica Acta, 2020, 333, 135566.
36 Köhler L, Szabadics L, Jooss C, et al. Batteries & Supercaps, 2019, 2, 364.
37 Li C H, Cheng J S, Jiang Y, et al. Applied Surface Science, 2021, 538, 148015.
38 Yuan R H, He Y, He W, et al. Applied Energy, 2019, 251, 113406.
39 He Y H, Tan Q, Lu L L, et al. Electrochemical Energy Reviews, 2019, 2(2), 231.
40 Shen S Y, Ren Z W, Xiang S L, et al. Journal of Electrochemical Energy Conversion and Storage, 2021 19(1), 010905.
41 Ahmed M S, Begum H, Kim Y B. Journal of Power Sources, 2020, 451, 227733.
42 Liu J, Zhu Y Y, Fan C H, et al. Energy Technology, 2020, 8(6), 2000149.
43 Chen X L, Zhu H B, Ding L F. Journal of Electroanalytical Chemistry, 2020, 873, 114389.
44 Kwon S H, Han S B, Kwak D H, et al. Journal of Industrial and Engineering Chemistry, 2019, 80, 171.
45 Zhao H, Hu Z P, Zhu Y P, et al. Chinese Journal of Catalysis, 2019, 40(9), 1366.
46 Elizabeth M M, Ana M V M, Gabriel A N, et al. Diamond and Related Materials, 2020, 103, 107671.
47 Lai Q X, Zheng J, Tang Z M, et al. Angewandte Chemie International Edition, 2020, 59(29).
48 Cai J J, Zhou Q Y, Gong X F, et al. Carbon, 2020, 167, 75.
49 Lu X F, Xia B Y, Zang S Q, et al. Angewandte Chemie International Edition, 2020, 59(12), 4634.
50 Antonio C N J, Fabiola H G, Alvarez R G A. Coordination Chemistry Reviews, 2020, 412, 213263.
51 He F, Fu D J, Chen J J, et al. Battery Bimonthly, 2021, 51(1), 83(in Chinese).
何峰, 符冬菊, 陈建军, 等. 电池, 2021, 51(1), 83.
52 Meng J S, Liu Z, Liu X, et al. Journal of Materials Science & Technology, 2021, 66(7), 186.
53 Su L J, Hashikaa R, Maria C, et al. International Journal of Hydrogen Energy, 2021, 46(18), 10739.
54 Honorato A M B, Khalid M, Dai Q, et al. Synthetic Metals, 2020, 264,116383.
55 Choi J, Cho J, Roh C W, et al. Applied Catalysis B: Environmental, 2019, 247, 142.
56 Martinaiou I, Monteverde V A H A, Weidler N, et al. Applied Catalysis B: Environmental, 2020, 262, 118217.
57 Gan J. Mechanistic understanding and fine-tuning of Pt/C electrocatalysts for oxygen reduction reaction. Ph. D. Thesis, East China University of Science and Technology, China, 2020 (in Chinese).
甘杰. 氧还原Pt/C纳米催化剂结构调控与反应机理. 博士学位论文, 华东理工大学, 2020.
58 Reza A M, Vankova S K, Easton E B, et al. Renewable Energy, 2020, 154, 913.
59 Wen S L, Li X H, Sun L, et al. Chinese Journal of Power Sources, 2019, 43(12), 2048 (in Chinese).
温术来, 李向红, 孙亮, 等. 电源技术, 2019, 43(12), 2048.
60 Xu N N, Nie Q, Liu J W, et al. Journal of the Electrochemical Society, 2020, 167(5), 050512.
61 An J K, Li N, Zhao Q, et al. Water Research, 2019, 164, 114933.
62 Asghar A, Raman A A A, Daud W M A W, et al. Research on Chemical Intermediates, 2019, 45(6), 3311.
63 Su P, Zhou M H, Lu X Y, et al. Applied Catalysis B: Environmental, 2019, 245, 583.
64 Wang Y, Yi M, Wang K, et al. Chinese Journal of Catalysis, 2019, 40(4), 523.
[1] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[2] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[3] 冯磊, 舒文祥, 文陈, 崔庆新, 白晶莹, 李心歆. 火星原位资源可用途径分析[J]. 材料导报, 2022, 36(22): 22040408-7.
[4] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[5] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[6] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[7] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[8] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[9] 刘圆圆, 余强, 陈阵, 朱薇, 胡琪, 郑昭毅, 尤红军, 吕泽, 陈帮耀. 电流密度对钴锰共掺杂二氧化铅阳极材料电化学性能的影响[J]. 材料导报, 2022, 36(18): 20100153-6.
[10] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[11] 张立昌, 蔡超, 谭金婷, 周江峰, 王园, 潘牧. 质子交换膜燃料电池微孔层在反极过程中的耐久性研究[J]. 材料导报, 2022, 36(14): 21030086-7.
[12] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[13] 吴国玉, 郑晔, 王明涌, 邢志军. Co修饰的碳载Pt纳米粒子催化剂的制备与表征[J]. 材料导报, 2021, 35(z2): 306-310.
[14] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[15] 吴国玉, 郑晔, 王明涌, 邢志军. 化学还原法制备高分散纳米铂粒子[J]. 材料导报, 2021, 35(Z1): 406-410.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed