Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21040196-8    https://doi.org/10.11896/cldb.21040196
  无机非金属及其复合材料 |
SrTiO3基可逆固体氧化物电池电极材料的研究进展
刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻*, 吴锴
西安交通大学电气工程学院,新型储能与能量转换纳米材料研究中心,西安 710049
Research Progress of SrTiO3-based Electrodes for Reversible Solid Oxide Cells
LIU Zhengrong, YANG Jiaming, FU Lei, ZHOU Likai, WU Ke, LI Qinghao, WANG Xuan, ZHOU Jun*, WU Kai
Research Center of Novel Energy Storage and Energy Conversion Nanomaterials, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 3897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可逆固体氧化物电池(RSOC) 因具备高效可逆的发电和电解产氢性能,被认为是一种具有良好发展前景的能源转化设备。然而,缺乏高活性和稳定性的电极材料是限制RSOC广泛应用的主要因素之一。传统的燃料电极一般采用浸镍的氧化钇稳定氧化锆(Ni-YSZ)材料,而氧电极则以钙钛矿型的氧化物居多。目前使用的燃料电极和氧电极的电化学性能都存在一定的不足。近期,诸多研究报道SrTiO3基钙钛矿材料具有良好的稳定性和电化学性能,有望成为RSOC电极的热门候选材料。近年来,虽然对RSOC电极的研究较多,但是缺乏对该类材料系统的归纳和总结。因此,本文综述了SrTiO3基钙钛矿材料在RSOC电极方面的应用进展。首先,系统分析了SrTiO3基钙钛矿材料在RSOC燃料电极和氧电极的研究现状,介绍了目前常用的SrTiO3改性的手段和策略,如掺杂其他元素、构建非ABO3化学计量比氧化物、构建复合材料以及利用原位纳米颗粒出溶技术等;其次,探讨了SrTiO3基钙钛矿材料应用于对称结构RSOC电极的可行性;最后,结合构建未来新一代RSOC高性能能源互联器件,展望了SrTiO3基钙钛矿材料在RSOC中的应用前景,并提出了亟需解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘峥嵘
杨甲铭
付磊
周礼凯
吴可
李晴皓
王璇
周峻
吴锴
关键词:  可逆固体氧化物电池(RSOC)  固体氧化物燃料电池(SOFC)  固体氧化物电解池(SOEC)  钛酸锶    
Abstract: Reversible solid oxide cell (RSOC) is an energy conversion device with high efficiency of reversible power generation and electrolytic hydrogen generation, which is considered as a new energy conversion device with good development prospects. However,there are still some technical problems to be solved, as the lack of highly active and stable electrode materials currently limits the wide application of RSOC. Traditionally, the fuel electrode generally uses nickel-yttrium-stabilized zirconia (Ni-YSZ) materials, while there are many types of oxides that can be used as the oxygen electrode. The electrochemical properties of both fuel electrodes and oxygen electrodes have to be further improved. In recent years lots of works reported that SrTiO3-based perovskite material is a typical of electrode material with good performance in RSOC, which has become a popular candidate material to solve the RSOC electrode problem. However, there is a lack of systematic summary of this kind of materials. Therefore, the application progress of SrTiO3-based perovskite materials as the RSOC electrode is reviewed in this paper. Firstly, the study of SrTiO3-based perovskite materials used as RSOC fuel and oxygen electrodes is systematically analyzed, and the methods and measures commonly used for SrTiO3 modification, such as doping, nonstoichiometric ratio, recombination and a new method: in situ precipitation, are introduced. Secondly, the feasibility of applying SrTiO3-based perovskite for RSOC electrodes with a symmetrical structure is discussed. Finally, from the perspective of the construction of a new generation of high-performance RSOC for energy internet in the future, the application prospect and the problems to be solved of SrTiO3-based perovskite materials in RSOC are predicted.
Key words:  reversible solid oxide cell (RSOC)    solid oxide fuel cell (SOFC)    solid oxide electrolysis cell (SOEC)    strontium titanate
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(51737011;51877173);国家电网有限公司科技项目(SGSDJN00FZQT1700446)
通讯作者:  * zhoujun@mail.xjtu.edu.cn   
作者简介:  刘峥嵘,2020年6月毕业于西安交通大学,获得工学和管理学学士学位。现为西安交通大学电气工程学院硕士研究生,在周峻副教授的指导下进行科研工作。目前主要从事固体氧化物燃料电池高性能材料研究。
周峻,2007年毕业于兰州理工大学,获得工学学士学位。2010年毕业于兰州大学,获得材料物理学硕士学位。2014年毕业于西安交通大学,获得电气工程博士学位。现为西安交通大学电气工程学院副教授、博士研究生导师。研究方向为新能源系统的优化、新能源器件及材料。发表SCI、EI论文60余篇。
引用本文:    
刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
LIU Zhengrong, YANG Jiaming, FU Lei, ZHOU Likai, WU Ke, LI Qinghao, WANG Xuan, ZHOU Jun, WU Kai. Research Progress of SrTiO3-based Electrodes for Reversible Solid Oxide Cells. Materials Reports, 2022, 36(21): 21040196-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040196  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21040196
1 Paolo D G, Umberto D. Energies, 2016, 9(8), 662.
2 Ferrero D, Lanzini A, Leone P, et al. Chemical Engineering Journal, 2015, 274, 143.
3 Wendel C H, Braun R J. Applied Energy, 2016, 172, 118.
4 Xu N, Li X, Zhao X, et al. Energy & Environmental Science, 2011, 4(12), 4942.
5 Singhal S C, Kendall K. High temperature solid oxide fuel cells fundamentals, design and applications, Science Press, China, 2007 (in Chinese).
辛格哈尔, 肯德尔.高温固体氧化物燃料电池原理、设计和应用, 科学出版社, 2007.
6 Jiao Y, Wang L Y, Zhang L Q, et al. Energy & Fuels, 2018, 32(4), 4547.
7 Da Silva A L, Heck N C. Journal of Power Sources, 2015, 296, 92.
8 Prakash B S, Kumar S S, Aruna S T. Renewable and Sustainable Energy Reviews, 2014, 36, 149.
9 Ma Z F, Lin W M, Huang C R, et al. Chinese Journal of Power Sources, 1994(1), 10(in Chinese).
马紫峰, 林维明, 黄传荣, 等. 电源技术,1994(1), 10.
10 Marina O A, Pederson L R, Williams M C, et al. Journal of the Electrochemical Society, 2007, 154(5), B452.
11 Wang W S, Huang Y Y, Jung S, et al. Journal of the Electrochemical Society, 2006, 153(11), A2066.
12 Jensen S H, Larsen P H, Mogensen M. International Journal of Hydrogen Energy, 2007, 32(15), 3253.
13 Fan H, Keane M, Li N, et al. International Journal of Hydrogen Energy, 2014, 39(26), 14071.
14 Laguna-Bercero M A, Kilner J A, Skinner S J. Solid State Ionics, 2011, 192(1), 501.
15 Li R P, Zhang C, Liu J H, et al. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(3), 6(in Chinese).
李润萍, 张程, 刘建华, 等. 昆明理工大学学报(自然科学版),2019,44(3),6.
16 Chang L L. Development and Application of Materials, 2014, 29(1), 89(in Chinese).
常亮亮.材料开发与应用, 2014, 29(1), 89.
17 Liu T, Zhao Y Q. Applied Chemical Industry, 2019, 48(9), 2162(in Chinese).
刘通, 赵怡茜.应用化工, 2019,48(9), 2162.
18 Shannon radii. http:∥abulafia.mt.ic.ac.uk/shannon/ptable.php.
19 Zhou X, Zhao H L, Xu N S, et al. Journal of the Chinese Ceramic Society, 2011, 39(6), 958(in Chinese).
周雄,赵海雷,徐南生,等. 硅酸盐学报, 2011, 39(6), 958.
20 Shang P P, Zhang B P, Li J F, et al. Rare Metal Materials and Enginee-ring, 2009, 38(S2), 315(in Chinese).
尚鹏鹏, 张波萍, 李敬锋, 等. 稀有金属材料与工程, 2009, 38(S2), 315.
21 Gao F, Zhao H L, Li X, et al. Journal of Power Sources, 2008,185, 26.
22 Cheng Y F, Zhao H L, Wang Z F, et al. Rare Metal Materials and Engineering, 2008, 37(12), 2069(in Chinese).
程云飞, 赵海雷, 王治峰, 等. 稀有金属材料与工程,2008,37(12), 2069.
23 Xu D. Preparation and properties of CeO2 based composite electrolyte for medium temperature solid oxide fuel cell. Ph. D Thesis, Jilin University, China, 2008(in Chinese).
徐丹. 中温固体氧化物燃料电池CeO2基复合电解质材料的制备和性能研究. 博士学位论文,吉林大学,2008.
24 Qin M J, Gao F, Cizek J, et al. Scripta Materialia, 2021,190, 118.
25 Li X, Zhao H L, Xu N S, et al. International Journal of Hydrogen Energy, 2009, 34 (15), 6407.
26 Chang W. Preparation of SOFC lanthanum-doped strontium titanate anode and study of electrode properties. Master's Thesis, Harbin Institute of Technology, China, 2015(in Chinese).
常文博. SOFC镧掺杂钛酸锶阳极材料制备及电极性能的研究. 硕士学位论文, 哈尔滨工业大学,2015.
27 Zhao H L, Huang X L, Li X, et al. Chinese Journal of Materials Research, 2007(3), 255(in Chinese).
赵海雷, 黄贤良, 李雪, 等. 材料研究学报, 2007(3), 255.
28 Hashimoto S, Kindermann L, Larsen P H, et al. Journal of Electrocera-mics, 2006, 16(2), 103.
29 Shang Y F. Preparation and properties of La and Fe double-doped SrTiO3 oxide anode materials. Master's Thesis, Harbin Institute of Technology, China, 2011(in Chinese).
尚玉芬. La和Fe双掺杂SrTiO3氧化物阳极材料的制备与性能研究.硕士学位论文,哈尔滨工业大学,2011.
30 Marina O A, Canfield N L, Stevenson J W. Solid State Ionics, 2002, 149, 21.
31 Silva E R, Curi M, Furtado J G, et al. Ceramics International, 2019, 45(8), 9761.
32 Sun X F, Guo R S, Li J, et al. Chinese Journal of Power Sources, 2006(4), 282(in Chinese).
孙秀府, 郭瑞松, 李娟, 等. 电源技术,2006(4), 282.
33 Li X, Zhao H L, Shen W, et al. Journal of Power Sources, 2007, 166(1), 47.
34 Hui S, Petric A. Journal of the European Ceramic Society, 2002, 22(9-10), 1673.
35 Hui S, Petric A. Journal of the Electrochemical Society, 2002, 149(1), J1.
36 Blennow P, Hagen A, Hansen K K, et al. Solid State Ionics, 2008, 179(35-36), 2047.
37 Blennow P, Hansen K K, Wallenberg L R, et al. Solid State Ionics, 2009, 180(1), 63.
38 Sudireddy B R, Blennow P, Nielsen K A. Solid State Ionics, 2012, 216, 44.
39 Xiao G L, Nuansaeng S, Lei Z, et al. Journal of Materials Chemistry A, 2013, 1, 10546.
40 Singh S, Singh P, Viviani M, et al. International Journal of Hydrogen Energy, 2018, 43(41), 19242.
41 Huang Y Z, Chen J G, Dong J, et al. Rare Metal Materials and Enginee-ring, 2009, 38(S1), 178(in Chinese).
黄永珍, 程继贵, 董洁, 等. 稀有金属材料与工程, 2009, 38(S1), 178.
42 Wu D. Preparation and properties of lanthanum doped strontium titanate as anode material for solid oxide fuel cells. Master's Thesis, Jilin University, China, 2009 (in Chinese).
吴迪. 固体氧化物燃料电池阳极材料镧掺杂钛酸锶的制备和性能研究. 硕士学位论文,吉林大学,2009.
43 Li X, Zhao H L, Feng G, et al. Electrochemistry Communications, 2008, 10(10), 1567.
44 Huang X L, Zhao H L, Wei S, et al. Journal of Physics & Chemistry of Solids, 2006, 67(12), 2609.
45 Smith B H, Holler W C, Gross M D. Solid State Ionics, 2011, 192(1), 383.
46 Yang L, Stefan B, Falk S K, et al. Journal of the European Ceramic So-ciety, 2018, 38(15), 5058.
47 Steinsvik S,Bugge R,GjØnnes J, et al. Journal of Physics & Chemistry of Solids, 1997, 58(6), 969.
48 Kharton V V, Kovalevsky A V, Viskup A P, et al. Journal of Solid State Chemistry,2001,156, 437.
49 E W J. Study on the properties of La and Cr double-doped SrTiO3 anode materials. Master's Thesis, Harbin Institute of Technology, China, 2012(in Chinese).
鄂文晶. La和Cr双掺杂SrTiO3阳极材料的性能研究. 硕士学位论文,哈尔滨工业大学,2012.
50 Lei S H, Fan H Q, Chen W N, et al. Journal of the American Ceramic Society, 2017, 100(1), 235.
51 Fagg D P, Kharton V V, Kovalevsky A V, et al. Journal of the European Ceramic Society, 2001, 21(10), 1831.
52 Fagg D P, Kharton V V, Frade J R, et al. Solid State Ionics, 2003, 156(1), 45.
53 Yoon J S, Yi E J, Choi B H, et al. Ceramics International, 2014, 40(1), 1525.
54 Yoon J S, Yoon M Y, Kwak C, et al. Materials Science and Engineering B, 2012, 177(2), 151.
55 Guo X M. Materials Letters, 2014, 121, 251.
56 Ma Q, Tietz F, Stöver D. Solid State Ionics, 2011, 192(1), 535.
57 Fu Q S, Mi S B, Wessel E, et al. Journal of the European Ceramic Society, 2008, 28(4), 811.
58 Zhao H L, Feng G, Li X, et al. Solid State Ionics, 2009, 180(2-3), 193.
59 Shan K, Guo X M. Materials Letters, 2013, 113, 126.
60 Shan K, Guo X M. Electrochimica Acta, 2015, 154, 31.
61 Luo D W, Xiao W D, Lin F, et al. Advanced Powder Technology, 2016, 27(2), 481.
62 Chen H L, Zhu T L, Chen X Y, et al. Journal of the Electrochemical Society, 2020, 167(16), 164507.
63 Puenjinda P, Muroyama H, Mastui T, et al. Journal of Power Sources, 2012, 204, 67.
64 Ma Q L, Iwanschitz B, Dashjav E, et al. Solid State Ionics, 2014, 262(9), 465.
65 Neagu D, Tsekouras G, Miller D N, et al. Nature Chemistry, 2013, 5, 916.
66 Neagu D, Oh T S, Miller D N, et al. Nature Communications, 2015, 6, 8120.
67 Li S S, Li Y X, Yun G, et al. Journal of Power Sources, 2012, 218, 244.
68 Xie K, Zhang Y Q, Meng G Y, et al. Energy and Environmantal Science, 2011, 4(6), 2218.
69 Cao Z Q, Wei B, Miao J P, et al. Electrochemistry Communications, 2016, 69, 80.
70 Dogu D, Gunduz S, Meter K E, et al. Catalysis Letters, 2019, 149(7), 1743.
71 Yang X X, Sun K N, Ma M J, et al. Applied Catalysis B: Environmental, 2020, 272, 118968.
72 Zhang L Y, Wang Z H, Cao Z Q, et al. International Journal of Hydrogen Energy, 2017, 42(17), 12104.
73 Zhang L Y, Zhu X B, Cao Z Q, et al. Electrochimica Acta, 2017, 232, 542.
74 Zhang L J. Study on the performance of solid oxide electrolytic cell with Pr0.3Sr0.7Ti0.3Fe0.7O3-δ cathode. Master's Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
张丽娟. 应用Pr0.3Sr0.7Ti0.3Fe0.7O3-δ 阴极的固体氧化物电解池性能研究.硕士学位论文,哈尔滨工业大学,2017.
75 Qi W T, Ruan C, Wu G J, et al. International Journal of Hydrogen Energy, 2014, 39(11), 5485.
76 Zhang J, Xie K, Gan Y, et al. New Journal of Chemistry, 2014, 38(8), 88.
77 Qin Q Q, Wu G J, Chen S G, et al. Electrochimica Acta, 2014, 127, 215.
78 Gan Y, Qin Q Q, Chen S G, et al. Journal of Power Sources, 2014, 245, 245.
79 Canales-Vazquez J, Ruiz-Morales J C, Marrero-Lcpez D, et al. Journal of Power Sources, 2007, 171(2), 552.
80 Martinez-Coronado R, Agudero A, Perez-Coll D, et al. International Journal of Hydrogen Energy, 2012, 37(23), 18310.
81 Rath M, Kossenko A, Michael Z, et al. Journal of Power Sources, 2020, 476, 228630.
82 Niu B B, Jin F J, Zhang L L, et al. Electrochimica Acta, 2018, 263, 217.
83 Molin S, Lewandowska-Iwaniak W, Kusz B,et al. Journal of Electroceramics, 2012, 28(1), 80.
84 Zhao H, Teng D Q, Zhang X H, et al. Journal of Power Sources, 2009, 186(2), 305.
85 Xu J, Zhou X L, Pan L, et al. Journal of Power Sources, 2017, 371, 1.
86 Xu J, Zhou X L, Cheng J H, et al. Electrochimica Acta, 2017, 257, 64.
87 Cao Z Q, Zhang Y H, Miao J P, et al. International Journal of Hydrogen Energy, 2015, 40(46), 16572.
88 Fu L, Zhou J, Yang J M, et al. Materials Letters, 2020, 279, 128503.
89 Niu B B, Lu C L, Yi W D, et al. Applied Catalysis B: Environmental, 2020, 270, 118842.
90 Ling Y H, Chen L Y, Lin B, et al. RSC Advances, 2015, 5(22), 17000.
[1] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[2] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[3] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[4] 张文博, 王华, 许积文, 刘国保, 谢航, 杨玲. 铋掺杂对SrTiO3薄膜微观结构及阻变行为的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1932-1937.
[5] 刘旭东, 毕孝国, 孙旭东. 焰熔法生长钛酸锶单晶体生长室内温度分布的数值模拟*[J]. 《材料导报》期刊社, 2017, 31(16): 138-143.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed