Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010107-10    https://doi.org/10.11896/cldb.24010107
  无机非金属及其复合材料 |
超高性能混凝土-花岗岩石材界面的抗剪性能研究
王耀1,2, 郑新颜2,3, 黄伟2,*, 吴应雄2, 黄雅莹2, 张恒春1, 张峰1
1 中建海峡建设发展有限公司,福州 350015
2 福州大学土木工程学院,福州 350108
3 湖南大学土木工程学院,长沙 410082
Experimental Study on Interface Shear Behavior Between Ultra-high Performance Concrete and Granite Stone
WANG Yao1,2, ZHENG Xinyan2,3, HUANG Wei2,*, WU Yingxiong2, HUANG Yaying2, ZHANG Hengchun1, ZHANG Feng1
1 CSCEC Strait Construction and Development Co., Ltd., Fuzhou 350015, China
2 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
3 College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 37396KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在超高性能混凝土(Ultra-high performance concrete,UHPC)加固修复既有石结构中,UHPC与石材之间良好的粘结性能是保证加固效果的关键。因此,为探究UHPC-石材的界面抗剪性能,通过五组UHPC-石材剪切试验,以石材表面粗糙度(光滑、凿毛、不同键槽深度)为变量,研究了UHPC-石材试件破坏模式、荷载-滑移曲线、界面抗剪强度、基体应变等特征。将试验结果与数值模拟结果进行了对比,并提出界面抗剪承载力公式。结果表明:界面键槽处理方式能显著提高UHPC-石材试件界面粘结抗剪强度、改变破坏形态并有效提升试件的延性,当键槽深度为20 mm时,试件表现出较好的界面粘结性能。另外,UHPC与石材基体在弹性变形阶段的应变发展相似,表明两者材料在该阶段具有较好的协调变形能力。通过数值模拟及界面承载力计算公式与试验结果的验证表明,数值模拟的荷载-滑移曲线、界面粘结强度、应力分布等与试验结果表现出良好的一致性;此外,不同键槽形状的参数分析结果表明,当键槽深度为10 mm、20 mm时,正梯形键槽提高了界面抗剪承载力;与现有的界面抗剪承载力公式对比,提出的UHPC-石材界面承载力计算公式能够有效地预测界面抗剪承载力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王耀
郑新颜
黄伟
吴应雄
黄雅莹
张恒春
张峰
关键词:  超高性能混凝土  石材  界面处理  界面抗剪性能  数值模拟    
Abstract: The excellent bonding property between UHPC(ultra-high performance concrete) and stone is the key to ensuring the reinforcement effect of existing stone structure buildings by UHPC. Therefore, in order to explore the interface shearing behavior between UHPC and stone, five groups of specimens with smooth surface, chisel treatment and different groove depths were investigated by push-off tests. Then, the failure model, load-slip curve, interfacial shear strength, and matrix strain of UHPC-stone specimens were studied. Based on the experimental results, the numerical simulation was carried out and the formula of shearing capacity was proposed. The results show that the interface grooves treatment could significantly improve the interface shear strength, change the failure model and effectively improve the ductility of specimens. The specimen shows better interface bonding strength and ductility when the groove depth is 20 mm. In addition, the strain development of UHPC matrix is similar to that of stone at the elastic deformation stage, which indicates that the both materials have better coordinated deformation ability at this stage. Through the verification of numerical simulation and calculation formula of interface bearing capacity, the load-slip curve, interfacial bon-ding strength and stress distribution from numerical simulation are in good agreement with these from experiment. In addition, the results of parameter analysis of different groove shapes show that the positive trapezoid treatment can improves the interface shear performance at groove depth of 10 mm and 20 mm. Compared with the existing formulas of shearing bearing capacity, the proposed formula can effectively predict the interface shear capacity of UHPC-stone.
Key words:  ultra-high performance concrete (UHPC)    stone    surface treatment    interface shear performance    numerical simulation
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52378495);福建省中科院STS计划配套项目(2022T3032);中建七局重点课题(CSCEC7b-2024-Z-1);福建省住建厅科技开发研究项目(2022-K-229;2022-K-294;2025-K-31)
通讯作者:  *黄伟,博士,福州大学土木工程学院助理研究员、硕士研究生导师。主要从事超高性能/超高延性水泥基复合材料、固体废弃物综合利用、水泥水化及微结构演变、混凝土海洋环境耐久性、高性能混凝土外加剂等相关研究工作。WeiHuang@fzu.edu.cn   
作者简介:  王耀,中建海峡副总经理,总工程师。目前主要从事超高性能水泥基复合材料、结构安全监测、钢管混凝土等相关研究工作。
引用本文:    
王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
WANG Yao, ZHENG Xinyan, HUANG Wei, WU Yingxiong, HUANG Yaying, ZHANG Hengchun, ZHANG Feng. Experimental Study on Interface Shear Behavior Between Ultra-high Performance Concrete and Granite Stone. Materials Reports, 2025, 39(6): 24010107-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010107  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010107
1 Angiolilli M, Gregori A, Cattari S. Construction and Building Materials, 2021, 294, 123508.
2 Sorrentino L, Cattari S, Da Porto F, et al. Bulletin of Earthquake Engineering, 2019, 17(10), 5583.
3 Chen B C, Ji T, H Q W, et al. Journal of Architecture and Civil Engineer, 2014, 31(3), 1(in Chinese).
陈宝春, 季韬, 黄卿维, 等. 建筑科学与工程学报, 2014, 31(3), 1.
4 Zhou Z, Qiao P. Construction and Building Materials, 2019, 201, 842.
5 Bu L T, Xu B Y. Engineering Mechanics, 2022, 39(11), 123(in Chinese).
卜良桃, 徐博煜. 工程力学, 2022, 39(11), 123.
6 Chen B, Liu J, Habib T. In:9th International Conference on Arch Bridges. Switzerland, 2019, 536.
7 Wu Y X, Zheng X Y, Huang W, et al. Materials Reports, 2023, 37(16), 144(in Chinese).
吴应雄, 郑新颜, 黄伟, 等. 材料导报, 2023, 37(16), 144.
8 Wu Y X, Zheng X Y, Huang W, et al. Engineering Structures, 2023, 286, 116142.
9 Ma X L, Yang J, Zhou J T, et al. Materials Reports, 2022, 36(24), 94 (in Chinese).
马兴林, 杨俊, 周建庭, 等. 材料导报, 2022, 36(24), 94.
10 Wang Z S, Yang J, Zhou J T, et al. Structures, 2022, 43, 805.
11 Yang J, Chen R, Zhang Z Y, et al. China Civil Engineering Journal, 2022, 55(6), 62(in Chinese).
杨俊, 陈瑞, 张中亚, 等. 土木工程学报, 2022, 55(6), 62.
12 Zhang Z, Pang K, Xu L, et al. Construction and Building Materials, 2023, 365, 130092.
13 Javidmehr S, Empelmann M. Sustainability, 2021, 13(15), 8229.
14 Zhang Y, Zhang C, Zhu Y, et al. Construction and Building Materials, 2020, 236, 117480.
15 Yang J, Xia J, Cheng C, et al. Frontiers in Materials, 2022, 9, 859717.
16 Ganesh P, Murthy A R. Construction and Building Materials, 2020, 250, 118871.
17 Jang H O, Lee H S, Cho K, et al. Construction and Building Materials, 2017, 152, 16.
18 Fazad M, Shafieifar M, Azizinamini A. Engineering Structures, 2019, 186, 297.
19 Hussein H H, Walsh K K, Sargand S M, et al. Journal of Bridge Engineering, 2017, 22(8), 04017043.
20 Jang H O, Lee H S, Cho K, et al. Advances in Materials Science and Engineering, 2018, 2018(3), 1.
21 Wang D H, Shen T, Ju Y Z, et al. Journal of Building Structures, 2020, 41(S2), 411(in Chinese).
王德弘, 沈彤, 鞠彦忠, 等. 建筑结构学报, 2020, 41(S2), 411.
22 Feng Z, Li C X, Zhou J L, et al. China Civil Engineering Journal, 2022, 55(6), 79(in Chinese).
冯峥, 李传习, 周佳乐, 等. 土木工程学报, 2022, 55(6), 79.
23 Gopal B A, Hejazi F, Hafezolghorani M, et al. ACI Structural Journal, 2020, 117(1), 279.
24 Deng Z C, Lu Y H, Gong M G, et al. Journal of Tianjin University (Science and Technology), 2022, 55(6), 621(in Chinese).
邓宗才, 鹿宇浩, 龚明高, 等. 天津大学学报(自然科学与工程技术版), 2022, 55(6), 621.
25 Yu R, Liu K, Yin T, et al. Cement and Concrete Composites, 2022, 127, 104418.
26 China Engineering Construction Standardization Association. Technical requirements for ultra high performance concrete, China Standards Press, China, 2020(in Chinese).
中国工程建设标准化协会. 超高性能混凝土(UHPC)技术要求, 中国标准出版社, 2020.
27 ASTM C170/C170M-17. Standard test method for compressive strength of dimension stone, USA,2017.
28 ASTM D3967-16. Standard test method for splitting tensile strength of intact rock core specimens, USA, 2016.
29 ASTM/E965-96. Standard test method for measuring pavement macrotexture depth using a volumetric technique, USA, 2006.
30 American Concrete Institute. Guide for the selection of materials for the repair of concrete, USA, 2004.
31 Yang J, Fang Z. Concrete, 2008(7), 11(in Chinese).
杨剑, 方志. 混凝土, 2008(7), 11.
32 Zhang Z, Shao X D, Li W G, et al. China Journal of Highway and Transport, 2015, 28(8), 50(in Chinese).
张哲, 邵旭东, 李文光, 等. 中国公路学报, 2015, 28(8), 50.
33 Guo Z X, Chai Z L, Hu Y D, et al. China Civil Engineering Journal, 2010, 43(S1), 136(in Chinese).
郭子雄, 柴振岭, 胡奕东, 等. 土木工程学报, 2010, 43(S1), 136.
34 Chen Z X, Miao W, Ye Y. Journal of Huaqiao University (Natural Science), 2022, 43(5), 570(in Chinese).
陈志新, 苗伟, 叶勇. 华侨大学学报(自然科学版), 2022, 43(5), 570.
35 Zani G, Martinelli P, Galli A, et al. Foundations, 2019, 22, 23
36 Liu W, Xu M, Chen Z F. Industrial Construction, 2014, 44 (S1), 167(in Chinese).
刘巍, 徐明, 陈忠范. 工业建筑, 2014, 44(S1), 167.
37 American Association of State Highway and Transportation Officials (AASHTO), LRFD bridge design specifications, USA, 2005
38 ACI Committee 318. Building code requirements for structural concrete and commentary (ACI 318-14),USA, 2014.
39 European Committee for Standardization(CEN). Eurocode 2:Design of concrete structures. general rules and rules for buildings, British Standard Institution, London, 2008.
40 Comité Euro-International du Beton (CEB-FIP). Structural concrete:textbook on behaviour, design and performance, International Federation for Structural Concrete (Fib), Switzerland, 2010.
41 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures, China Building Industry Press, China, 2010(in Chinese).
中华人民共和国住房和城乡建设部, 混凝土结构设计规范,中国建筑工业出版社, 2010.
42 Graybeal B A. In:FHWA-HRT-06-103, Federal Highway Administration, Washington DC, 2006.
[1] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[2] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[7] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[8] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[11] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[12] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[13] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[14] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[15] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed