Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010115-6    https://doi.org/10.11896/cldb.24010115
  金属与金属基复合材料 |
焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响
李欢1,*, 张健1, 伍世英2, 刘千喜1
1 长江大学机械工程学院,湖北 荆州 434023
2 广州铁路职业技术学院机电工程学院,广州 510430
Effects of Sonotrode Geometry on Welding Temperature Field and Plastic Deformation in Cu/Al High-power Ultrasonic Welding
LI Huan1,*, ZHANG Jian1, WU Shiying2, LIU Qianxi1
1 School of Mechanical Engineering, Yangtze University, Jingzhou 434023, Hubei, China
2 School of Mechanical and Electronics, Guangzhou Railway Polytechnic, Guangzhou 510430, China
下载:  全 文 ( PDF ) ( 21456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 焊头形状是超声焊接的重要参数,但目前关于焊头形状对焊接过程的影响认识不足。利用有限元方法建立了一个三维声-热-结构场耦合模型,针对Cu/Al大功率超声焊接过程,主要研究了焊头的齿间距及角度对界面温度、材料塑性变形、焊头下压位移及微观组织的影响。结果表明,当焊头齿间距为0.9 mm时,接头成型良好,无明显缺陷,且较高的界面温度促进了中间相的生长;在齿间距为0.8 mm、1.0 mm时,焊头边缘下方材料的塑性应变较高,导致裂纹产生并扩展。随着焊头齿角度从108°增大到135°,界面温度从471.9 ℃逐渐降低至456.3 ℃,焊头下压位移从0.344 mm降低至0.304 mm,工件最大塑性应变从0.94大幅降低至0.63。研究结果可为优化焊头形状提供了理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李欢
张健
伍世英
刘千喜
关键词:  超声焊接  焊头形状  铝合金  异质接头  塑性变形    
Abstract: The geometry of the sonotrode tip is an important parameter of ultrasonic welding, but the influence of the welding head geometry on the wel-ding process is insufficient currently. A three-dimensional sound-thermal-mechanical field coupling model was established using the finite element method. The influence of tooth spacing and angle on interface temperature, interface plastic deformation and microstructures, and sonotrode downward displacement during Cu/Al high power ultrasonic welding was mainly investigated. The results showed that when the spacing of the sonotrode tooth was 0.9 mm, the joint was well formed without obvious defects, and the higher interface temperature promoted the growth of the intermetallic compound. When the spacing of the tooth was 0.8 mm or 1.0 mm, the plastic strain of the material below the edge of the sonotrode was significantly higher, resulting in the production and expansion of the crack. As the sonotrode teeth angle increased from 108° to 135°, the interface temperature decreased from 471.9 ℃ to 456.3 ℃, the sonotrode displacement decreased from 0.344 mm to 0.304 mm, and the maximum plastic strain of specimens sharply decreased from 0.94 to 0.63. This research should provide a theoretical reference of optimizing the welding geometry.
Key words:  ultrasonic welding    sonotrode geometry    aluminum alloy    dissimilar joint    plastic deformation
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TG456.9  
基金资助: 湖北省教育厅重点项目(D20221306);2022年度广东省普通高校青年创新人才类项目-异种材料超声波辅助扩散连接关键性问题研究(2022KQNCX224);湖北省重点研发计划项目(2020BAB055)
通讯作者:  *李欢,长江大学机械工程学院副教授、硕士研究生导师。目前主要研究领域为新能源汽车车身和动力锂电池的精密焊接工艺及过程数值模拟。lihuan@yangtzeu.edu.cn   
引用本文:    
李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
LI Huan, ZHANG Jian, WU Shiying, LIU Qianxi. Effects of Sonotrode Geometry on Welding Temperature Field and Plastic Deformation in Cu/Al High-power Ultrasonic Welding. Materials Reports, 2025, 39(6): 24010115-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010115  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010115
1 Li H, Zhang C X, Ao S S, et al. Rare Metal Materials and Engineering, 2022, 51(12), 4624 (in Chinese).
李欢, 张长鑫, 敖三三, 等. 稀有金属材料与工程, 2022, 51(12), 4624.
2 Meng Q, Che Q Y, Wang K S, et al. Materials Reports, 2019, 33(12), 2030 (in Chinese).
孟强, 车倩颖, 王快社, 等. 材料导报, 2019, 33(12), 2030.
3 Ni Z L, Yang J J, Gao Z T, et al. Journal of Manufacturing Processes, 2020, 50(2), 57.
4 Gu X Y, Liu D F, Liu J. ISIJ International, 2018, 58(9), 1721.
5 Wu X, Liu T, Cai W. Journal of Manufacturing Processes, 2015, 20(10), 321.
6 Ji H J, Wang J Z, Li M Y. Journal of Materials Processing Technology, 2014, 214(2), 175.
7 Das S, Satpathy M P, Pattanaik A, et al. Materials and Manufacturing Processes, 2019, 34(15), 1689.
8 Jahn R, Cooper R, Wilkosz D. Metallurgical and Materials Transactions A, 2007, 38(3), 570.
9 Komiyama K, Sasaki T, Watanabe Y. Journal of Materials Processing Technology, 2016, 229(3), 714.
10 Lee D, Cai W. Journal of Manufacturing Processes, 2017, 28(8), 428.
11 Li H, Cao B, Liu J, et al. International Journal of Advanced Manufacturing Technology, 2018, 97(1-4), 833.
12 Li H, Cao B, Yang J W, et al. Transactions of the China Welding Insititution, 2017, 38(8), 5 (in Chinese).
李欢, 曹彪, 杨景卫, 等. 焊接学报, 2017, 38(8), 5.
13 Chen K K, Zhang Y S. Materials & Design, 2015, 87(12), 393.
[1] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[2] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[3] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[7] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[8] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[9] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[10] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[11] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[12] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[13] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[14] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[15] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed