Microstructure and Properties of AlxCoCrFeNi High-entropy Alloys via Laser Melting Deposition
HUANG Liufei1,2,3, WANG Xiaoying2, SUN Yaoning3, CHEN Liang1, WANG Long1, REN Congcong2, YANG Xiaoshan2, WANG Dou2, LI Jinfeng2,*
1 State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, Shenzhen 518172, Guangdong, China 2 Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, Sichuan, China 3 School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
Abstract: In this work, laser melting deposition technology (LMD) has been exploited to manufactured AlxCoCrFeNi (x=0, 0.3, and 0.5, denoted as Alx hereafter), and the impacts of Al addition on phase structure, microstructure, and performance of LMD-CoCrFeNi alloys were investigated. The results indicate that the microstructure of Al0 and Al0.3 consists of a single-phase FCC solid solution, whereas the one in Al0.5 is composed of a B2 phase enriched Al and Ni atoms precipitated at the grain boundary/dendritic grain boundary for the FCC phase matrix. The tensile mechanical properties of the alloy samples showed that the yield strength of the Al0.5CoCrFeNi high entropy alloy reached 2.66 times of the original alloy (140—372 MPa), the tensile strength reached ~716 MPa, and the elongation was ~40%. The electrochemical polarization curve analysis shows that a prominently stable passivation region represents in the AlxCoCrFeNi HEA in 1 mol/L H2SO4 solution. Fascinatingly, the obtuse current and dimensional obtuse current exhibit decrease first and then increase for the tendency accompanied with the increase of Al content.
通讯作者: *李晋锋,中国工程物理研究院材料研究所副研究员、硕士研究生导师。2015年清华大学材料学院材料科学与工程专业博士毕业后到中国工程物理研究院材料所工作至今。目前主要从事新型高熵合金设计、合金材料增材制造工艺等方面的研究工作。发表论文50余篇,包括Scripta Materialia、Journal of Alloys and Compounds、Journal of Materials Science & Technology、 Materials Science and Engineering: A等。
1 Cantor B, Chang I T H, Knight P, et al. Materials Science & Enginee-ring A, 2004, 375-377, 213. 2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299. 3 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105. 4 Rogal Ł, Czerwinski F, Jochym P T, et al. Materials & Design, 2016, 92, 8. 5 Tsai M H. Entropy, 2013, 15(12), 5338. 6 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1. 7 Gao M C, Yeh J W, Liaw P K, et al. High-entropy alloys: fundamentals and applications, Springer International Publishing, Switzerland, 2016. 8 Lyu Z P, Lei Z F, Huang H L, et al. Acta Metallurgica Sinica, 2018, 54(11), 1553(in Chinese). 吕昭平, 雷智锋, 黄海龙, 等. 金属学报, 2018, 54(11), 1553. 9 Li M, Gazquez J, Borisevich A, et al. Intermetallics, 2018, 95, 110. 10 Huang L F, Sun Y N, Amar A, et al. Vacuum, 2021, 183, 109875. 11 Chou H P, Chang Y S, Chen S K, et al. Materials Science & Engineering B, 2009, 163(3), 184. 12 Li X, Li Z T, Wu Z G, et al. Journal of Materials Science & Technology, 2021, 94, 264. 13 Li J F, Xiang S, Luan H W, et al. Journal of Materials Science & Technology, 2019, 35(11), 2430. 14 Amar A, Li J F, Xiang S, et al. Intermetallics, 2019, 109, 162. 15 Xiang S, Luan H W, Wu J, et al. Journal of Alloys and Compounds, 2018, 773, 387. 16 Xiang S, Li J F, Luan H W, et al. Materials Science and Engineering A, 2019, 743, 412. 17 Huang L F, Sun Y N, Ji Y Q, et al. Chinese Journal of Lasers, 2021, 48(6), 0602107(in Chinese). 黄留飞, 孙耀宁, 季亚奇, 等. 中国激光, 2021, 48(6), 0602107. 18 Yuan B L, Li C Q, Dong Y, et al. Materials Reports, 2021, 35(Z2), 417(in Chinese). 袁碧亮, 李传强, 董勇, 等. 材料导报, 2021, 35(Z2), 417. 19 Xia M, Sun B, Wang X, et al. Materials Reports, 2021, 35(13), 13119(in Chinese). 夏铭, 孙博, 王鑫, 等. 材料导报, 2021, 35(13), 13119. 20 Shi Y, Yang B, Xie X, et al. Corrosion Science, 2017, 119, 33. 21 Shi Y Z, Collins L, Feng R, et al. Corrosion Science, 2018, 133, 120. 22 Kao Y F, Lee T D, Chen S K, et al. Corrosion Science, 2010, 52, 1026. 23 Takeuchi A, Inoue A. Materials Transactions, 2005, 46, 2817. 24 He J Y, Huang H L, Xu X D, et al. Acta Materialia, 2016, 102, 187. 25 Vida A, Varga L K, Chinh N Q, et al. Materials Science & Engineering A, 2016, 669, 14. 26 Della Rovere C A, Alano J H, Silva R, et al. Corrosion Science, 2012, 57, 154.