Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3805-3813    https://doi.org/10.11896/j.issn.1005-023X.2018.21.018
  金属与金属基复合材料 |
海洋环境下钢材表面镀铝工艺的研究进展
王瑶, 赵雪妮, 党新安, 王旭东, 张黎, 杨建军, 何富珍, 张伟刚, 刘庆瑶
陕西科技大学机电学院,西安 710021
Aluminizing Steel Surface for Providing Protection in Marine Environment: a Technological Review
WANG Yao, ZHAO Xueni, DANG Xin'an, WANG Xudong, ZHANG Li, YANG Jianjun, HE Fuzhen, ZHANG Weigang, LIU Qingyao
College of Mechanical & Electrical Engineering,Shaanxi University of Science & Technology,Xi'an 710021
下载:  全 文 ( PDF ) ( 2079KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢材作为基础性结构材料被广泛应用于海洋工程领域,随着国家对海洋开发的支持力度不断加大,对应用于此环境下的钢材的需求也不断增加。但是,暴露于苛刻海洋环境下的钢材极易与周围的含氯、硫等介质发生反应而受到严重腐蚀,同时,潮汐、日照、溶解氧、微生物以及深海压力和热液带来的高温等环境条件也会加速钢材的腐蚀,严重影响海洋工程设施的服役安全、寿命以及可靠性。
因此,对钢材进行表面处理提高其耐腐蚀性能成为研究热点,其中涂层制备技术是最常用的腐蚀控制方法。铝及铝合金在腐蚀环境及高温氧化环境下表面可以形成一层致密的氧化膜,是一种常用的耐腐蚀涂层材料,通过不同工艺在钢材表面制备的铝涂层已达到了长效的防腐蚀效果。
目前,制备铝涂层的工艺主要有热浸镀法、电镀法、包埋渗铝法及热喷涂法等。热浸镀铝工艺因操作简单、成本低廉而被广泛应用于海洋平台、海洋码头、桥梁等海洋基础设施。电镀铝工艺制备的涂层厚度、组织、形貌可控,可以实现在微小零件上的精准沉积。新型绿色环保的离子液体体系的开发,在提高电镀效率和涂层质量的同时降低了对环境的污染。粉末包埋渗铝制备的涂层具有极高的抗高温氧化性能,被广泛应用于海洋油气开采工程。低温包埋渗铝工艺可避免传统渗铝工艺高温导致的钢材力学性能下降。此外,浆料渗铝以及气相渗铝等工艺的开发拓宽了渗铝工艺的应用领域。热喷涂工艺在海洋环境下应用最为广泛,所制备的铝涂层具有极高的耐腐蚀性能,其中火焰喷涂、电弧喷涂、冷喷涂等工艺能够实现新型防腐蚀铝涂层的设计与制备。
本文针对海洋环境下应用的钢材,详细介绍了在其表面镀铝工艺的研究进展,包括热浸镀、电镀、包埋渗铝和热喷涂等,并对不同镀铝工艺在海洋环境下的应用及发展方向做了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑶
赵雪妮
党新安
王旭东
张黎
杨建军
何富珍
张伟刚
刘庆瑶
关键词:  海洋坏境  钢材表面  镀铝工艺  热浸镀  电镀  包埋渗铝  热喷涂    
Abstract: Steels have found extensive application in the field of marine engineering as one species of essential structural materials, and the continuous mounting support for marine resource utilization exaggerates the demand for steel products. The exposure of steel to harsh marine environment will easily lead to severe corrosion for the sake of the reaction between the steel and the surroun-ding chlorine- and sulfur-containing corrosive medium. Meanwhile, other minus circumstances, such as tides, sunlight, dissolved oxygen, microorganisms, abyssal sea pressure, and hydrothermal fluid-induced high temperature usually aggravate the corrosion of steels. These would seriously affect service safety, lifespan and reliability of marine engineering facilities.
Therefore, aiming at improving the corrosion resistance of steel, researchers and engineers have paid much interest to the surface treatment techniques exemplified by coating preparation. Aluminum and its alloys can form a dense oxide film on the surface in corrosive and high-temperature oxidation environment. Aluminum coatings prepared on steel surfaces through different processes have been proved to have long-term corrosion protection efficacy.
Currently, the common methods for preparing aluminum coatings include hot dipping, electroplating, embedding aluminizing, thermal spraying, etc. Owing to its simple operation and low cost, hot dip aluminizing process has been widely used in marine infrastructures, e.g. marine platforms, wharfs, bridges. Electroplating technique enjoys the advantage of controllable coating thickness, microstructure and morphology by moderate preparation conditions and adjustable process parameters, and has successfully achieved precise deposition of aluminum coatings on tiny parts. Furthermore, the newly emerging green and eco-friendly ionic liquid systems facilitate the improvement of electroplating efficiency and coating quality while reducing the pollution to environment. Aluminum coatings prepared by powder embedding process have excellent high-temperature oxidation resistance, which are widely used in marine oil and gas field. Moreover, low-temperature embedding aluminizing process can overcome the problem of high-temperature-induced mechanical properties deterioration with respect to traditional aluminizing process. In addition, the development of slurry aluminizing and vapor phase aluminizing has promoted the practical application of the embedding aluminizing process. Thermal spraying techniques, including flame spraying, arc spraying and cold spraying, are the most widely used aluminizing techniques which could obtain high-anti-corrosion protective surface against marine environment.
This review provides a vivid description of the research progress with respect to aluminizing process used to prepare aluminum coatings on surface of steels which serve under the marine environment, including hot dipping, electroplating, embedding aluminizing and thermal spraying. It also gives a brief prospective discussion over the potential application and development tendency of these various aluminizing techniques.
Key words:  marine environment    steel surface    aluminizing process    hot dipping    electroplating    embedding aluminizing    thermal spraying
                    发布日期:  2018-11-21
ZTFLH:  TB37  
基金资助: 国家自然科学基金(51772179; 51072107); 陕西省重点研发计划项目(2018GY-168); 凝固技术国家重点实验室开放课题(SKLSP201823); 陕西省自然科学基金项目(2014JM6233); 陕西科技大学学术骨干培育计划项目(XSGP201208); 陕西科技大学博士科研启动基金(BJ13-09); 陕西省大学生创新创业训练计划项目(1349; 1416(2018))
作者简介:  王瑶:女,1994年生,硕士研究生,研究方向为多层金属复合板制备及变形、金属板材表面防腐涂层、生物复合材料及涂层 E-mail:978238355@qq.com;赵雪妮:通信作者,女,1974年生,博士,教授,研究方向为多层金属复合板制备及变形、金属板材表面防腐涂层、生物复合材料及涂层 E-mail:zhaoxueni@sust.edu.cn;党新安:男,1958年生,教授,研究方向为金属复合材料成形工艺与设备 E-mail:dangxa@sust.edu.cn
引用本文:    
王瑶, 赵雪妮, 党新安, 王旭东, 张黎, 杨建军, 何富珍, 张伟刚, 刘庆瑶. 海洋环境下钢材表面镀铝工艺的研究进展[J]. 材料导报, 2018, 32(21): 3805-3813.
WANG Yao, ZHAO Xueni, DANG Xin'an, WANG Xudong, ZHANG Li, YANG Jianjun, HE Fuzhen, ZHANG Weigang, LIU Qingyao. Aluminizing Steel Surface for Providing Protection in Marine Environment: a Technological Review. Materials Reports, 2018, 32(21): 3805-3813.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.018  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3805
1 周廉,等.中国海洋工程材料发展战略咨询报告[M].北京:化学工业出版社,2014.
2 Jeffrey R, Melchers R E.Corrosion of vertical mild steel strips in seawater[J].Corrosion Science,2009,51(10):2291.
3 Liu H D,Wang D Z,Wang C G,et al.A review of corrosion fatigue cracks for stainless steels in marine environments[J].Corrosion Research,2017,31(4):60(in Chinese).
刘海定,王东哲,王春光,等.海水环境中不锈钢腐蚀疲劳裂纹研究进展[J].腐蚀研究,2017,31(4):60.
4 Ma Y T,Li Y,Wang F H.The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment[J].Corrosion Science,2010,52(5):1796.
5 Shi Z M,Cao J B,Han F S.Preparation and characterization of Fe-Al intermetallic layer on the surface of T91 heat-resistant steel[J].Journal of Nuclear Materials,2014,447:77.
6 Sun J,Wan M P.Compartion of corrosion resisting properties of hot dip garvanizing and aluminium coating of steel parts and their application[J].Modern Machinery,2010(2):75(in Chinese).
孙捷,万明攀.热浸镀锌和热浸镀铝钢铁件的耐蚀性能比较及应用[J].现代机械,2010(2):75.
7 Lemmens B,Springer H,Graeve I D, et al.Effect of silicon on the microstructure and growth kinetics of intermetallic phases formed during hot-dip aluminizing of ferritic steel[J].Surface & Coatings Technology,2017,319:104.
8 Takata N, Nishimoto M, Kobayashi S, et al.Morphology and formation of Fe-Al intermetallic layers on iron hot-dipped in Al-Mg-Si alloy melt[J].Intermetallics,2014,54(12):136.
9 Cheng W J, Wang C J.Growth of intermetallic layer in the aluminide mild steel during hot-dipping[J].Surface & Coatings Technology,2009,204(6-7):824.
10 Awan G H, Hasan F U.The morphology of coating/substrate interface in hot-dip aluminized steels[J].Materials Science and Enginee-ring A,2008,472(1-2):157.
11 Wu J J, Li K, Fan Y Z. The formation process of transition layer of steel wire hot-dipped galfan by sendzimir process[J].Advanced Materials Research,2012,383-390:3917.
12 Wu Y K.Comparison of hot-dip aluminizing technology for iron and steel wares(Ⅰ)—One bath fluxing route[J].Materials Protection,2011,10(44):71(in Chinese).
吴元康. 钢铁件热浸镀铝工艺比较(Ⅰ)—一浴溶液法[J].材料保护,2011,10(44):71.
13 Jeshvaghani R A, Emami M, Shafiee O, et al.Study on formation and characterization of iron aluminide coatings on 9Cr-1Mo steel substrate[J].Surface & Coatings Technology,2014,240(3):365.
14 Zhao G H, Zhao J H.Surface modification of die casting mold steel by a composite technique of hot-dipping and plasma electrolytic oxidation[J].Rare Metals,2012,31(4):362.
15 Yu S R, Xu S M, Xing H R.Hot dip aluminizing process and surface morphology on stainless steel surface[J].Hot Working Technology,2015,44(10):153(in Chinese).
于思荣,徐淑苗,邢海瑞.不锈钢表面热浸镀铝工艺及表面形貌[J].热加工工艺,2015,44(10):153.
16 Kang S, Han K, Kim K, et al.Formation behavior of an intermetallic compound layer during the hot dip aluminizing of cast iron[J].ISIJ International,2012,52(7):1342.
17 Zhang W, Liu A P, Jin W Z.Diffusion behavior of aluminum atoms in hot dip RE-aluminizing[J].Advanced Materials Research,2011,328-330:1523.
18 Wen J B, Zhang W, Li X Y, et al. The influence of La on the corrosion resistance of hot-dip aluminized steel[J].Materials Science Forum,2005,475-479:3851.
19 Wen J B, Li Q A, Zhao W X, et al.Investigation of properties of hot-dipped Ce-rich rare earth aluminum alloy upon condition of corrosion environment[J].Acta Scientiarum Naturalium Universitatis Sunyat-seni,2003,42(sup.):41.
20 Sun W, Cai Q Z, Luo Q.Effects of rare earth on microstructure and corrosion resistance of hot-dip aluminum coating[J].China Surface Engineering,2010,23(6):24(in Chinese).
孙伟,蔡启舟,罗强.RE对热浸镀铝镀层组织及耐蚀性能的影响[J].中国表面工程,2010,23(6):24.
21 Cheng W J, Wang C J.High-temperature oxidation behavior of hot-dipped aluminide mild steel with various silicon contents[J].Applied Surface Science,2013,274(6):258.
22 Takata N, Nishimoto M, Kobayashi S, et al.Crystallography of Fe2Al5 phase at the interface between solid Fe and liquid Al[J].Intermetallics,2015,67:1.
23 Wulf S E, Holstein N, Krauss W.Influence of deposition conditions on the microstructure of Al-based coatings for applications as corrosion and anti-permeation barrier[J].Fusion Engineering & Design,2013,88(9-10):253.
24 Wang J H, Zhang A P.Preparation and properties of aluminum coa-ting electrodeposited from AlCl3+LiAlH4 organic solvent[J].Electroplating and Finishing,2007,26(2):9(in Chinese).
王吉会,张爱平.AlCl3+LiAlH4有机溶剂中铝镀层的制备与性能研究[J].电镀与精饰,2007,26(2):9.
25 Liu Q X, Abedin S Z E, Endres F. Electroplating of mild steel by aluminium in a first generation ionic liquid: A green alternative to commercial Al-plating in organic solvents[J].Surface & Coatings Technology,2006,201(3-4):1352.
26 Abedin S Z E, Endres F. Challenges in the electrochemical coating of high-strength steel screws by aluminum in an acidic ionic liquid composed of 1-Ethyl-3-methylimidazolium chloride and AlCl3[J].Journal of Solid State Electrochemistry,2013,17(4):1127.
27 Sangjae K, Salman S, Liang Y, et al.Aluminum electroplating in AlCl3/dimethylsulfone electrolyte[C]∥The 19th Interfnish World Congress & Exhibition.Beijing,2016.
28 Zhang S M, Zhou Y Q.Electroplating of aluminum from organic solutions[J].Corrosion and Protection,2000,21(2):57(in Chinese).
张守民,周永洽.有机溶液中铝的电镀[J].腐蚀与防护,2000,21(2):57.
29 Miyake M, Tajikara S, Hirato T, et al.Fabrication of TiAl3 coating on TiAl-based alloy by Al electrodeposition from dimethylsulfone bath and subsequent annealing[J].Surface and Coatings Technology,2011,205(21):5141.
30 Miyake M, Motonami H, Shiomi S, et al.Electrodeposition of purified aluminum coatings from dimethylsulfone-AlCl3 electrolytes with trimethylamine hydrochloride[J].Surface & Coatings Technology,2012,206(19-20):4225.
31 Jafarian M, Maleki A, Danaee I, et al.Electrodeposition of Al,Mn,and Al-Mn Alloy on aluminum electrodes from molten salt ( AlCl3-NaCl-KCl )[J].Journal of Applied Electrochemistry,2009,39(8):1297.
32 Feng Q Y, Ding Z M, Zhao Z Y, et al.A new technology of composition treatment of steel heat treatment in molten salt and its surface aluminum-electroplating[J].Locomotive and Rolling Stock Technology,2003(6):5(in Chinese).
冯秋元,丁志敏,赵振燕,等.钢的盐浴热处理及表面电镀铝复合处理新工艺[J].机车车辆工艺,2003(6):5.
33 Nayak B, Misra M M.The electrodepesition of aluminium on mild steel from a molten alumiuium chloride-sodium chloride bath[J].Applied Electrochemistry,1979,9:699.
34 Zhou Q L, Shen T, Xue L H, et al.Electroplating aluminum on steel in inorganic molten salt[J].Special Casting and Nonferrous Alloys,2010,30(8):748(in Chinese).
周启来,沈涛,薛丽红,等.钢基材表面无机熔融盐电镀铝的研究[J].特种铸造及有色合金,2010,30(8):748.
35 Shu J J.Microstructure and corrosion resistance of aluminum coating electroplated on low carbon steel from low-temperature AlCl3-NaCl-KCl inorganic molten salt[J].Materials Protection,2010,43(1):46(in Chinese).
舒均杰. 低温AlCl3-NaCl-KCl三元无机熔盐体系电镀铝工艺[J].材料保护,2010,43(1):46.
36 Ding Z M, Feng Q Y, Song J M, et al.Effect of current density on morpho-logy of electrodeposition aluminum crystal from molten salts[J].Transactions of Materials and Heat Treament,2012,33(9):129(in Chinese).
丁志敏,冯秋元,宋建敏,等.电流密度对熔盐电镀铝晶粒形貌的影响[J].材料热处理学报,2012,33(9):129.
37 Ding Z M, Feng Q Y, Shen C B, et al.Rule of formation of aluminum electroplating layer on Q235 steel[J].Journal of Environmental Sciences,2011,23:S138.
38 Abbott A P, Frisch G, Ryder K S.Electroplating using ionic liquids[J].Annual Review of Materials Research,2013,43(1):335.
39 Takahashi H, Matsushima H, Ueda M.Al film electrodeposition from the AlCl3-EMIC electrolyte under a magnetic field[J].Journal of the Electrochemical Society,2017,164(8):H5165.
40 Uehara K, Yamazaki K, Gunji T, et al.Evaluation of key factors for preparing high brightness surfaces of aluminum films electrodeposi-ted from AlCl3-1-ethyl-3-methylimidazolium chloride-organic additive baths[J].Electrochimica Acta,2016,215:556.
41 Zhang G K, Chen C A, Luo D L, et al.An advance process of aluminum rich coating as tritium permeation barrier on 321 steel workpiece[J].Fusion Engineering & Design,2012,87(7-8):1370.
42 Jiang T, Brym M J C, Dubé G, et al. Electrodeposition of aluminium from ionic liquids:Part Ⅱ—Studies on the electrodeposition of aluminum from aluminum chloride (AlCl3)-trimethylphenylammonium chloride (TMPAC) ionic liquids[J].Surface and Coatings Technology,2006,201(1-2):10.
43 Chang J K, Chen S Y, Tsai W T, et al.Improved corrosion resistance of magnesium of alloy with a surface aluminum coating electrodeposition in ionic liquid[J].Journal of electrochemical Society,2008,155(3):C112.
44 Bozza F, Bolelli G, Giolli C, et al.Diffusion mechanisms and microstructure development in pack aluminizing of Ni-based alloys[J].Surface & Coatings Technology,2014,239:147.
45 Sun Y H, Dong J, Zhao P Z, et al.Formation and phase transformation of aluminide coating prepared by low temperature aluminizing process[J].Surface & Coatings Technology,2017,330:234.
46 Zhan Z L, Liu Z, Liu J X, et al.Microstructure and high-temperature corrosion behaviors of aluminide coatings by low-temperature pack aluminizing process[J].Applied Surface Science,2010,256:3874.
47 Montero X, Demler I, Kuznetsov V, et al.Factors governing slurry aluminization of steels[J].Surface & Coatings Technology,2017,309:179.
48 Eslami A, Arabi H, Rastegari S.Gas phase aluminizing of a nickel base superalloy by a single step HTHA aluminizing process[J].Canadian Metallurgical Quarterly,2009,48(1):91.
49 Wu X, Weng D, Zhao S, et al.Influence of an aluminized intermediate layer on the adhesion of a γ-Al2O3 washcoat on FeCrAl[J].Surface & Coatings Technology,2005,190(2):434.
50 Zhou Z H, Xie F, Hu J.A novel powder aluminizing technology assisted by direct current field at low temperatures[J].Surface and Coa-tings Technology,2008,203:23.
51 Guo S, Wang Z B, Lu K.An aluminide surface layer containing lower-Al on ferritic-martensitic steel formed by lower-temperature aluminization[J].Journal of Materials Science & Technology,2015,31(12):1268.
52 Bates B L, Wang Y Q, Zhang Y, et al.Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels[J].Surface and Coatings Technology,2009,204(6-7):766.
53 Lin R Q, Fu C, Liu M, et al.Microstructure and oxidation behavior of Al+Cr co-deposited coatings on nickel-based superalloys[J].Surface and Coatings Technology,2017,310:273
54 Majumdar S, Paul B, Kain V, et al.Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment[J].Mate-rials Chemistry and Physics,2017,190:31.
55 Ji W W, Song Y P, Chen K, et al.Effect of RE elements on the microstructure and properties of aluminizing layer of 40Cr steel[J].Chinese Rare Earths,2009,30(6):55(in Chinese).
纪文文,宋月鹏,陈克,等.稀土元素对40Cr钢渗铝层组织性能的影响研究[J].稀土,2009,30(6):55.
56 Zhu L M, Yang J H, Wang C S, et al.Microstructure and oxidation behavior of novel CeO2-modified aluminizing coating[J].Transactions of Materials and Heat Treament,2007,28(2):110(in Chinese).
朱利敏,杨景红,王长生,等.CeO2改性渗铝层及其氧化性能研究[J].材料热处理学报,2007,28(2):110.
57 Dutta R S, Majumdar S, Laik A, et al.Formation and characterization of aluminide coatings on alloy 800 substrate[J].Surface and Coatings Technology,2011,205:4720.
58 Xiang Z D, Datta P K.Relationship between pack chemistry and aluminide coating formation for low-temperature aluminisation of alloy steels[J].Acta Materialia,2006,54(17):4453.
59 Zhan Z L, He Y D, Wang D R, et al.Preparation of aluminide coatings at relatively low temperatures[J].Transactions of Nonferrous Metals Society of China,2006,16(2):647.
60 Huang M, Wang Y.Research progress of low-temperature pack aluminizing and its potential application on oil-casing steel and pipeline steel[J].Hot Working Technology,2012,41(8):127(in Chinese).
黄敏,王宇.低温包埋渗铝及其在石油管材防腐蚀应用中的研究进展[J].热加工工艺,2012,41(8):127.
61 Luyckx S, Machio C N.Characterization of WC-VC-Co thermal spray powders and coatings[J].International Journal of Refractory Metals and Hard Materials,2007,27(1):11.
62 Yan L D, Yi P, Xiao K, et al.The research of the pure zinc and Zn-Al alloy coating[J].Corrosion and Protection,2015,36(S2):92(in Chinese).
颜利丹,易盼,肖葵,等.纯锌及锌铝合金涂层的性能研究[J].腐蚀与防护,2015,36(S2):92.
63 Chang X, Han F H, Zhang X B, et al.Research on aluminum coating by flame spraying[J].Journal of Chongqing University of Technology (Natural Science),2012,26(6):42(in Chinese).
昌霞,韩付会,张小彬,等.火焰喷涂铝涂层[J].重庆理工大学学报(自然科学),2012,26(6):42.
64 Zhang X B, Chang X, Han F H, et al. Researches on aluminum coating by flame spraying on Q235 steel surface[J].Advanced Materials Research,2012,472-475:2775.
65 Diamantogiannis G, Apostolopoulos C A, Nikolakopoulos P G.Mechanical behavior of B500c steel with an aluminum layer coating in a marine environment[J].Journal of Materials in Civil Engineering,2015,27(4):04014155.
66 Rodriguez R M H P, Paredes R S C, Wido S H, et al. Comparison of aluminum coatings deposited by flame spray and by electric arc spray[J].Surface & Coatings Technology,2007,202(1):172.
67 Huang J, Liu Y, Yuan J, et al.Al/Al2O3 composite coating deposited by flame spraying for marine applications: Alumina skeleton enhances anti-corrosion and wear performances[J].Journal of Thermal Spray Technology,2014,23(4):676.
68 Esfahani E A, Salimijazi H, Golozar M A, et al.Study of corrosion behavior of arc sprayed aluminum coating on mild steel[J].Journal of Thermal Spray Technology,2012,1(6):1195.
69 Zhou J, Yang M, Wang R, et al.Annealing behavior of aluminum coating prepared by arc spraying on P355NL1 steel[J].Surface & Coatings Technology,2017,330:53.
70 Liu K, Ma P, Pu N, et al.Influence of silicon coating on the corrosion resistance of Zn-Al-Mg-RE-Si alloy[J].Journal of Rare Earths,2010,28:378.
71 Jiang Q, Miao Q, Liang W, et al.Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5 wt% NaCl solution[J].Electrochimica Acta,2014,115:644
72 Li W Y, Jiang R R, Huang C J, et al.Effect of cold sprayed Al coating on mechanical property and corrosion behavior of friction stir welded AA2024-T351 joint[J].Materials & Design,2015,65:757.
73 Moridi A, Hassanigangaraj S M, Gualiano M, et al.Cold spray coa-ting:Review of material systems and future perspectives[J].Surface Engineering,2014,30(6):369.
74 Kim K S, Lee C H, Huh H, et al.Effect of stain rate on microstructure evolution and compressive deformation behavior of high-strength aluminum coating materials fabricated by the kinetic spray process[J].Materials Transactions,2015,56(4):605.
75 Li N, Li W Y, Yang X W, et al.Effect of powder size on the long-term corrosion performance of pure aluminium coatings on mild steel by cold spraying[J].Materials & Corrosion,2016,68(5):546.
76 Peter I, Aldwell B, Lupoi R, et al.The deposition of pure aluminium via cold spray for the corrosion protection of steel[C]∥International Thermal Spray Conference.Shanghai,2016.
77 Silva F S D, Bedoya J, Dosta S, et al. Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel[J].Corrosion Science,2016,114:57.
[1] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[2] 刘健健,朱诚意,李光强. 连铸结晶器铜板表面涂镀层应用研究进展[J]. 材料导报, 2019, 33(17): 2831-2838.
[3] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[4] 王星星, 彭进, 崔大田, 孙国元, 何鹏. 不锈钢表面电镀锡银钎料的润湿特性[J]. 《材料导报》期刊社, 2018, 32(8): 1263-1266.
[5] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[6] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[7] 马坤, 刘亚, 涂浩, 苏旭平, 王建华. 镁含量和硅对铁-锌铝镁合金固-液扩散偶中Fe-Al反应层的影响[J]. 《材料导报》期刊社, 2017, 31(6): 61-65.
[8] 李嘉伟, 李大玉, 顾熠鑫, 肖金坤, 张超, 张燕军. 热喷涂制备二氧化钛涂层中锐钛矿相调控的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 26-31.
[9] 靳鹏, 钟伟强, 李富祥, 林巧力. 6061铝合金分别在Q235钢和纯钛表面的反应润湿*[J]. 《材料导报》期刊社, 2017, 31(18): 59-63.
[10] 毛杰, 邓春明, 吴相彬, 邓畅光, 宋进兵, 刘敏. 不同喷涂工艺下NiCoCrAlYTa涂层的显微结构和性能*[J]. 《材料导报》期刊社, 2017, 31(16): 51-54.
[11] 杨君宝, 郭秋萍, 赵博远, 金浩, 郭策安, 张健. CrNi3MoVA钢表面电火花沉积W-Ni-Fe-Co涂层的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(12): 35-38.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed