Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22080075-6    https://doi.org/10.11896/cldb.22080075
  金属与金属基复合材料 |
TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能
肖华强*, 尹星贵, 冯进宇, 肖易, 龚玉婷
贵州大学机械工程学院,贵阳 550025
Microstructure and Wear Properties of Laser Cladded Ti-Mo-Al-B Composite Coating on TC4 Surface
XIAO Huaqiang*, YIN Xinggui, FENG Jinyu, XIAO Yi, GONG Yuting
College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 27493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善TC4合金的表面耐磨性能,采用激光熔覆技术在TC4合金表面制备出Ti-Mo-Al-B复合涂层。分析了涂层的物相组成及微观组织结构,揭示了复合涂层的合成机理,结合其组织特征分析了涂层的硬度分布,并分析了不同载荷下涂层的摩擦磨损性能。结果表明,复合涂层与基体之间形成了良好的冶金结合,复合涂层主要由BCC固溶体基体相、短杆状和颗粒状TiB增强相以及少量α-Ti相组成。涂层的平均硬度为648.69HV,较基体TC4合金(330HV)提升了1.97倍。涂层的磨痕表面平整且犁沟较少,在载荷为30 N时,磨损量相较TC4基体减少了11%,其磨损机制为磨粒磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖华强
尹星贵
冯进宇
肖易
龚玉婷
关键词:  激光熔覆  复合涂层  显微组织  合成机理  TC4  摩擦磨损    
Abstract: In order to improve the wear properties of TC4 alloy, A Ti-Mo-Al-B composite coating was prepared on the surface of TC4 alloy using laser cladding technology. The phase composition and microstructure of the coating were studied and analyzed, the synthesis mechanism of the composite coating was revealed, and the hardness distribution of the coating was analyzed combined with its structural characteristics. In addition, the friction and wear properties of the coating under different loads were also studied and analyzed. The results show that a good metallurgical bond is formed between the composite coating and the matrix. The composite coating is mainly composed of BCC solid solution matrix phase, short rod and granular TiB reinforcing phase, and a small amount of α-Ti phase composition. The average hardness of the coating is 648.69HV, which is 1.97 times higher than that of the matrix TC4 alloy (330HV). The abrasive surface of the coating is flat with a few furrows. When the load is 30 N, the wear amount is reduced by 11% compared with TC4 matrix, and its wear mechanism is abrasive wear.
Key words:  laser cladding    composite coating    microstructure    synthesis mechanism    TC4    friction and wear
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TG174.4  
  TG665  
基金资助: 国家自然科学基金(52065009);贵州省科技计划项目(ZK [2021] 269 );贵阳市科技计划项目([2021]1-4)
通讯作者:  *肖华强,贵州大学机械工程学院教授、博士研究生导师。2006年太原理工大学材料成型及控制工程专业本科毕业,2009年重庆大学材料加工工程专业硕士毕业,2013年华南理工大学材料加工工程专业博士毕业后到贵州大学工作至今。目前主要从事激光制造技术、特殊服役条件下的材料失效及新材料开发方面的研究,发表学术论文50余篇,其中SCI收录论文20余篇。xhq-314@163.com   
引用本文:    
肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
XIAO Huaqiang, YIN Xinggui, FENG Jinyu, XIAO Yi, GONG Yuting. Microstructure and Wear Properties of Laser Cladded Ti-Mo-Al-B Composite Coating on TC4 Surface. Materials Reports, 2024, 38(12): 22080075-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080075  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22080075
1 Gao F Q, Li W S, Wu Y R, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(12), 2832 (in Chinese).
高凤琴, 李文生, 武彦荣, 等. 中国有色金属学报, 2020, 30(12), 2832.
2 Wang W C, Li J X, Ge Y, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(9), 2729.
3 Liu Y, Li J J, Xu Q, et al. Coatings, 2022, 12(6), 792.
4 Zhang H W, Zhang D L, Zhang T G, et al. Laser & Optoelectronics Progress, 2021, 58(1), 201 (in Chinese).
张宏伟, 张顶立, 张天刚, 等. 激光与光电子学进展, 2021, 58(1), 201.
5 Wang H Z, Wang Y L, Jiang F L, et al. Surface Technology, 2022, 51(12), 380 (in Chinese).
王会照, 王玉玲, 姜芙林, 等. 表面技术, 2022, 51(12), 380.
6 Lin Y H, Lin Z H, Chen Q T, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(5), 1057 (in Chinese).
林英华, 林振衡, 陈庆堂, 等. 中国有色金属学报, 2020, 30(5), 1057.
7 Hu D W, Liu Y, Chen H, et al. Chinese Journal of Lasers, 2021, 48(6), 239 (in Chinese).
胡登文, 刘艳, 陈辉, 等. 中国激光, 2021, 48(6), 239.
8 Wu W J, Yu H C, Zhang S X. Journal of Chongqing University of Technology(Natural Science), 2023, 37(9), 295 (in Chinese).
吴文静, 于贺春, 张素香. 重庆理工大学学报(自然科学), 2023, 37(9), 295.
9 Xu R H, Li X F, Zuo D W, et al. Chinese Journal of Rare Metals, 2014, 38(5), 807 (in Chinese).
许瑞华, 黎向锋, 左敦稳, 等. 稀有金属, 2014, 38(5), 807.
10 Guo C, Zhou J S, Chen J M. Journal of Inorganic Materials, 2012, 27(9), 970 (in Chinese).
郭纯, 周健松, 陈建敏. 无机材料学报, 2012, 27(9), 970.
11 Lin Y H, Chen Z Y, Li Y H, et al. Infrared and Laser Engineering, 2012, 41(10), 2694 (in Chinese).
林英华, 陈志勇, 李月华, 等. 红外与激光工程, 2012, 41(10), 2694.
12 Zhang K M, Zou J X, Li J, et al. Transactions of Nonferrous Metals Society of China, 2010, 20(11), 2192.
13 Zhang T G, Zhang Q, Zhuang H F, et al. Acta Optica Sinica, 2020, 40(11), 133 (in Chinese).
张天刚, 张倩, 庄怀风, 等. 光学学报, 2020, 40(11), 133.
14 Zhang X W, Liu G Z, Yi J C, et al. Surface Technology, 2020, 49(10), 61 (in Chinese).
张晓伟, 刘国政, 易俊超, 等. 表面技术, 2020, 49(10), 61.
15 Fei W, Yu H, Chen C, et al. Materials & Design, 2015, 80, 174.
16 Zhang S Y, Liu X B, Liu Y F, et al. China Surface Engineering, 2021, 34(6), 124 (in Chinese).
张诗怡, 刘秀波, 刘一帆, 等. 中国表面工程, 2021, 34(6), 124.
17 Zhang T G, Sun R L. Chinese Journal of Lasers, 2018, 45(1), 97 (in Chinese).
张天刚, 孙荣禄. 中国激光, 2018, 45(1), 97.
18 Feng Y Q, Feng K, Yao C W, et al. Materials and Design, 2018, 157, 258.
19 Feng J Y, Xiao H Q, Xiao Y, et al. Chinese Journal of Lasers, 2022, 49(2), 165 (in Chinese).
冯进宇, 肖华强, 肖易, 等. 中国激光, 2022, 49(2), 165.
20 Lin Y H, Lei Y P. Chinese Journal of Lasers, 2014, 41(7), 111 (in Chinese).
林英华, 雷永平. 中国激光, 2014, 41(7), 111.
21 Gardos M N. Tribology Letters, 2000, 8(2-3), 79.
22 Straffelini G, Molinari A. Tribology Letters, 2011, 41(1), 227.
23 Zhang Z Q, Yang F, Zhang H W, et al. Acta Aeronautica et Astronautica Sinica, 2021, 42(7), 43 (in Chinese).
张志强, 杨凡, 张宏伟, 等. 航空学报, 2021, 42(7), 43.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[3] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[4] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[5] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[6] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[7] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[8] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[9] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[10] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[11] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[12] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[13] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[14] 林方敏, 邢梅, 唐立志, 武学俊, 章小峰, 黄贞益. Fe-Mn-Al-C系低密度钢及其强韧化机制研究进展[J]. 材料导报, 2023, 37(5): 21050094-8.
[15] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed