Please wait a minute...
材料导报  2020, Vol. 34 Issue (1): 1169-1176    https://doi.org/10.11896/cldb.19100205
  |
柔性钠离子电池研究进展
孟锦涛,周良毅,钟芸,沈越,黄云辉
华中科技大学材料科学与工程学院,武汉 430074
Research Progress on Flexible Sodium-ion Batteries
MENG Jintao,ZHOU Liangyi,ZHONG Yun,SHEN Yue,HUANG Yunhui
School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
下载:  全 文 ( PDF ) ( 5195KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着柔性电子产品需求的日益增长,柔性电池得到越来越多的研究和关注。目前,柔性锂离子电池由于高功率密度和高能量密度的特点,在柔性屏、可穿戴设备应用上取得了实质性的进展。然而,锂矿资源储量有限、分布不均的问题限制了电池的可持续发展。在寻求新型电池的道路上,钠离子电池引起了人们的关注。钠在地球中的存储量比锂更多,价格更低,这使得钠离子电池有望满足未来的市场需求。柔性钠离子电池的关键材料包括电极活性材料、电极集流体、电解质和隔膜。电极不仅需要高容量和优异的电导率,还要具有良好的机械柔韧性,保证柔性电池在各种形变(弯曲、拉伸、折叠等)下正常工作。柔性电解质和隔膜在保证电池安全的同时,还要保持与正负极之间具有稳定的界面结合。但这些关键材料不成熟、不完善的问题阻碍了柔性钠离子电池的发展。此外,普通袋式的柔性电池无法满足未来电子设备小型化和可穿戴的要求。创新实用的结构设计和适合大规模生产的制备技术也亟待发展。
本文介绍了柔性钠离子电池电极材料(正负极活性材料和导电基底材料)、电解质、电池结构和制备工艺等方面的研究进展,对柔性电池现存的问题(比如成本高、安全性差、制备工艺复杂等)进行了分析探讨,最后展望了柔性钠离子电池未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孟锦涛
周良毅
钟芸
沈越
黄云辉
关键词:  柔性钠离子电池  新型储能器件  可穿戴  柔性结构    
Abstract: Flexible batteries have attracted great attention due to the growing need of power sources for flexible electronic products. At present, flexible lithium-ion battery dominates the consumer electronic markets, such as flexible displayers and wearable sensors, due to its high power and energy density. However, the limited lithium resourcesslow the sustainable development of batteries. Owing to abundant sodium resources and low cost, sodium-ion batteries have attracted more and more attention. Flexible sodium-ion batteries, which are expected to meet the future market demand, consist of electrode active materials, current collectors, electrolytes, and separators. The electrodes not only require high capa-city and electrical conductivity, but also need good mechanical flexibility to ensure that the flexible battery works properly under various deformations (bending, stretching, folding, etc.). Meanwhile, the flexible electrolytes and separators should maintain a stable interface with the electrodes while maintaining battery safety. However, these key materials are still imperfect which have hindered the development of flexible sodium-ion batteries. In addition, ordinary pouch-type flexible batteries cannot meet the miniaturization and wearability requirement of future electronic devices. Innovative and practical structural design and preparation techniques suitable for mass production are also in urgent need.
Here, this review introduces the research efforts with respects to flexible sodium-ion battery, and provides elaborate descriptions about the electrode materials (including anode materials, cathode materials and conductive substrate), electrolytes, battery structure and preparation process. In addition, the existing problems of flexible sodium-ion batteries, such as high cost, poor safety, complicated preparation process and other issues, are critically discussed and analyzed. For further development, lower cost active materials and substrates of flexible sodium-ion batteries, as well as structural innovation are essential to solve the problems of flexible sodium-ion batteries. The combination of advanced materials and novel battery configuration will accelerate the practical application of flexible batteries and promote the prosperity of flexible electronic devices.
Key words:  flexible sodium-ion battery    new energy storage device    wearable    flexible structure
                    发布日期:  2020-01-15
ZTFLH:  TM912  
基金资助: 国家自然科学基金重点项目(51632001)
通讯作者:  shenyue1213@hust.edu.cn; huangyh@hust.edu.cn   
作者简介:  孟锦涛,2017年本科毕业于合肥工业大学。现为华中科技大学材料科学与工程学院硕士研究生。目前主要研究领域为新型储能电池。
沈越,于北京大学获得学士、硕士和博士学位,博士期间在佐治亚理工学院进行联合培养。现为华中科技大学材料学院副教授。长期从事锂空气电池、超声检测等方面的研究,相关工作发表在Science、Advanced Materials、Journal of American Chemical Society、Nano EnergyAngewandte Chemie International Edition等顶级学术期刊上。
黄云辉,华中科技大学教授,博导,教育部“长江学者”特聘教授,国家杰出青年科学基金获得者。分别于1988年、1991年和2000年在北京大学获得学士、硕士和博士学位。2002—2008年先后在复旦大学、日本东京工业大学和美国得州大学奥斯汀分校从事研究工作。2008年回国,2010—2017年任华中科技大学材料科学与工程学院院长。主要研究领域为新型能源材料与器件,发表论文400余篇、专利30余件,入选科睿唯安材料科学领域全球“高被引科学家”(2018、2019),获国家自然科学二等奖1项。
引用本文:    
孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
MENG Jintao,ZHOU Liangyi,ZHONG Yun,SHEN Yue,HUANG Yunhui. Research Progress on Flexible Sodium-ion Batteries. Materials Reports, 2020, 34(1): 1169-1176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100205  或          http://www.mater-rep.com/CN/Y2020/V34/I1/1169
1 Armand M, Tarascon J M. Nature, 2008, 451(7179), 652.
2 Zhou G, Li F, Cheng H M. Energy & Environmental Science, 2014, 7(4), 1307.
3 Wen Y, He K, Zhu Y, et al. Nature Communications, 2014, 5, 4033.
4 Wen L, Li F, Cheng H. Advanced Materials, 2016, 28(22), 4306.
5 Wang S, Xia L, Yu L, et al. Advanced Energy Materials, 2016, 6(7), 1502217.
6 Yun Y S, Park Y U, Chang S J, et al. Carbon, 2016, 99, 658.
7 Zhang X, Zhou J, Liu C, et al. Journal of Materials Chemistry A, 2016, 4(22), 8837.
8 An H, Li Y, Gao Y, et al. Carbon, 2017, 116, 338.
9 Wang Y, Zhu W, Guerfi A, et al. Frontiers in Energy Research, 2019, 7, 28.
10 Ni Q, Dong R, Bai Y, et al. Energy Storage Materials, DOI: 10.1016/j.ensm.2019.09.001.
11 Li Z, Shen W, Wang C, et al. Journal of Materials Chemistry A, 2016, 4(43), 17111.
12 Zhao M, Xie X, Ren C E, et al. Advanced Materials, 2017, 29(37), 1702410.
13 Li Y, Wang D, An Q, et al. Journal of Materials Chemistry A, 2016, 4(15), 5402.
14 Li Y, Zhu H, Shen F, et al. Nano Energy, 2015, 13, 346.
15 Zhang Y, Liu Z, Zhao H, et al. RSC Advances, 2016, 6(2), 1440.
16 Du T, Zhu H, Xu B Bin, et al. ACS Applied Energy Materials, 2019, 2(6), 4421.
17 Chen G, Yao X, Cao Q, et al. Materials Letters, 2019, 234, 121.
18 Li W, Bi R, Liu G, et al. ACS Applied Materials & Interfaces, 2018, 10(32), 26982.
19 Zhang W, Liu Y, Chen C, et al. Small, 2015, 11(31), 3822.
20 Liu Y, Zhang N, Jiao L, et al. Advanced Materials, 2015, 27(42), 6702.
21 Fan M, Chen Y, Xie Y, et al. Advanced Functional Materials, 2016, 26(28), 5019.
22 Yang F, Gao H, Chen J, et al. Small Methods, 2017, 1(11), 1700216.
23 Liu Y, Zhang A, Shen C, et al. ACS Nano, 2017, 11(6), 5530.
24 Wang X, Guo H, Liang J, et al. Advanced Functional Materials, 2018, 28(26), 1801016.
25 Yu T, Lin B, Li Q, et al. Physical Chemistry Chemical Physics, 2016, 18(38), 26933.
26 Chen S, Wu C, Shen L, et al. Advanced Materials, 2017, 29(48), 1700431.
27 Kretschmer K, Sun B, Zhang J, et al. Small, 2017, 13(9), 1603318.
28 Guo D, Qin J, Zhang C, et al. Crystal Growth & Design, 2018, 18(6), 3291.
29 Yu S, Liu Z, Tempel H, et al. Journal of Materials Chemistry A, 2018, 6(37), 18304.
30 Zhan C L, Lu Y X, Yue J M, et al. Journal of Energy Chemistry, 2018, 27(6), 1584.
31 Wu X, Jin S, Zhang Z, et al. Science Advances, 2015, 1(8), e1500330.
32 He J, Wang N, Cui Z, et al. Nature Communications, 2017, 8(1), 1172.
33 Yang D, Liao X-Z, Shen J, et al. Journal of Materials Chemistry A, 2014, 2(19), 6723.
34 Liu Y, Zhang N, Yu C, et al. Nano Letters, 2016, 16(5), 3321.
35 Liu S, Luo Z, Tian G, et al. Journal of Power Sources, 2017, 363, 284.
36 Wang K, Huang Y, Wang M, et al. Carbon, 2017, 125, 375.
37 Ni Q, Bai Y, Li Y, et al. Small, 2018, 14(43), 1702864.
38 Chao D, Lai C, Liang P, et al. Advanced Energy Materials, 2018, 8(16), 1800058.
39 Zhu Y, Yuan S, Bao D, et al. Advanced Materials, 2017, 29(16), 1603719.
40 Kim I, Kim C H, Choi S hwa, et al. Journal of Power Sources, 2016, 307, 31.
41 Liu T, Kim K C, Lee B, et al. Energy & Environmental Science, 2017, 10(1), 205.
42 Nie P, Shen L, Pang G, et al. Journal of Materials Chemistry A, 2015, 3(32), 16590.
43 Zeng L, Yao Y, Shi J, et al. Energy Storage Materials, 2016, 5, 50.
44 Huang Y, Fang C, Zeng R, et al. ChemSusChem, 2017, 10(23), 4704.
45 Harris K D, Elias A L, Chung H J. Journal of Materials Science, 2016, 51(6), 2771.
46 Vignarooban K, Kushagra R, Elango A, et al. International Journal of Hydrogen Energy, 2016, 41(4), 2829.
47 Ni'mah Y L, Cheng M Y, Cheng J H, et al. Journal of Power Sources, 2015, 278, 375.
48 Bi S, Sun C, Zawodzinski Jr T A, et al. Journal of Polymer Science Part B: Polymer Physics, 2015, 53(20), 1450.
49 Zhang Z, Xu K, Rong X, et al. Journal of Power Sources, 2017, 372, 270.
50 Yang Y Q, Chang Z, Li M X, et al. Solid State Ionics, 2015, 269, 1.
51 Wang H, Li W, Liu D, et al. Advanced Materials, 2017, 29(45), 1703012.
52 Gao H, Guo B, Song J, et al. Advanced Energy Materials, 2015, 5(9), 1402235.
53 Gao H, Zhou W, Park K, et al. Advanced Energy Materials, 2016, 6(18), 1600467.
54 Kim J K, Lim Y J, Kim H, et al. Energy & Environmental Science, 2015, 8(12), 3589.
55 Yi Q, Zhang W, Li S, et al. ACS Applied Materials & Interfaces, 2018, 10(41), 35039.
56 Zhang Y, Zhao Y, Ren J, et al. Advanced Materials, 2016, 28(22), 4524.
57 Dong S, Shen L, Li H, et al. Journal of Materials Chemistry A, 2015, 3(42), 21277.
58 Yuan S, Huang X, Ma D, et al. Advanced Materials, 2014, 26(14), 2273.
59 Liu W, Chen J, Chen Z, et al. Advanced Energy Materials, 2017, 7(21), 1701076.
60 Xu S, Zhang Y, Cho J, et al. Nature Communications, 2013, 4, 1543.
61 Li H, Ding Y, Ha H, et al. Advanced Materials, 2017, 29(23), 1700898.
62 Guo Z, Zhao Y, Ding Y, et al. Chem, 2017, 3(2), 348.
63 Wei Y, Hu Q, Cao Y, et al. Organic Electronics, 2017, 46, 211.
64 Song Z, Wang X, Lv C, et al. Scientific Reports, 2015, 5, 10988.
[1] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[2] 高久伟,卢乾波,郑璐,王学文,黄维. 柔性生物电传感技术[J]. 材料导报, 2020, 34(1): 1095-1106.
[3] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[4] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed