Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23030043-8    https://doi.org/10.11896/cldb.23030043
  无机非金属及其复合材料 |
基于海水海砂混凝土真实孔溶液浸泡环境下BFRP筋拉伸性能的退化
朱德举1,2,*, 初开丹1, 郭帅成1,2, 史才军1
1 湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,长沙 410082
2 湖南大学湖南省绿色先进土木工程材料国际科技创新合作基地,长沙 410082
Tensile Properties Deterioration of BFRP Bars in Real Seawater Sea-sand Concrete Pore Solution Immersion Environment
ZHU Deju1,2,*, CHU Kaidan1, GUO Shuaicheng1,2, SHI Caijun1
1 Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
2 International Science Innovation Collaboration Base for Green & Advanced Civil Engineering Materials of Hunan Province, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 31209KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究玄武岩纤维增强复合材料(BFRP)筋在海水海砂混凝土环境中的长期力学性能,本工作研究了BFRP筋拉伸性能在海水海砂混凝土真实孔溶液浸泡环境下的演化规律。通过孔溶液压取和离子浓度分析,分别配制了普通海水净浆孔溶液(NA)和低碱度海水净浆孔溶液(LA)的浸泡溶液,同时在加速老化试验中与ACI 440.3R规范建议浸泡溶液(ACI)的测试结果进行了对比。试验所用筋材基体包括环氧树脂基(B/E筋)和乙烯基酯树脂基(B/V筋)两种。在不同温度和浸泡时间加速老化后,通过拉伸试验评估了BFRP筋的拉伸性能变化规律,并采用微观结构表征分析了劣化机理。试验结果表明,相较于降低氯离子浓度,采用降低孔溶液碱度的方法可以更有效地缓解BFRP筋长期力学性能的劣化,同时温度升高对B/V筋力学性能退化的影响比对B/E筋的影响更显著。BFRP筋在腐蚀过程中抗拉强度的劣化程度高于弹性模量,其中B/E筋在三种环境中腐蚀前后的弹性模量差别不大。乙烯基树脂的抗腐蚀能力优于环氧树脂,但其与玄武岩纤维界面性能较弱,导致B/V筋在模拟海水海砂混凝土孔溶液中的耐久性弱于B/E筋。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱德举
初开丹
郭帅成
史才军
关键词:  BFRP筋  海水海砂混凝土  孔溶液  拉伸性能  微观结构    
Abstract: In order to study the long-term mechanical properties of basalt fiber reinforced polymer (BFRP) bars in seawater sea-sand concrete (SSC) environment, this paper investigates the evolution of BFRP bar tensile properties immersed in real SSC pore solution environment. Soaking solutions based on normal seawater cement slurry pore solution (NA) and low alkalinity seawater cement slurry pore solution (LA) were prepared by pore solution extrusion and ion concentration analysis, and the test results were also compared with those in ACI 440.3R specification recommended soaking solution (ACI) through accelerated aging. The BFRP bars prepared with epoxy resin (B/E bars) and vinyl ester resin (B/V bars) were utilized in the tests. The change of tensile mechanical property of BFRP bars was evaluated by tensile tests after accelerated aging at different temperatures and immersion durations, and the degradation mechanism was analyzed by using microstructural characterization. The test results showed that reducing the alkalinity of the pore solution was more effectively than reducing the chloride ion concentration for delaying the degradation of long-term mechanical property of BFRP bars, and the effect of increasing temperature on the mechanical property degradation of B/V bars was more significant than that of B/E bars. The tensile strength degradation of BFRP bars during aging process was higher than their elastic modulus. Meanwhile the difference in elastic modulus of B/E bars before and after accelerated aging in the three environments was not significant. The corrosion resistance of vinyl resin was better than that of epoxy resin, but its weaker interfacial properties with basalt fibers resulted in worse durability of B/V bars than that of B/E bars in the simulated SSC pore solution.
Key words:  BFRP bars    seawater sea-sand concrete    pore solution    tensile property    microstructure
发布日期:  2024-06-25
ZTFLH:  TB332  
基金资助: 国家自然科学基金山东联合基金项目(U1806225);国家自然科学基金(52208246);长沙市自然科学基金(kq2202160)
通讯作者:  *朱德举,湖南大学教授、博士研究生导师,国家海外青年高层次人才,湖南省芙蓉学者特聘教授。长期从事高性能可持续土木工程复合材料及仿生结构材料研究,近年来,主持国家和省部级科研项目10余项(包括国家自然科学基金山东联合基金重点项目、面上项目、国防科技创新特区项目、装备预研教育部联合基金项目等)。在Cement and Concrete Composites、《土木工程学报》等国内外高水平期刊发表学术论文170余篇。dzhu@hnu.edu.cn   
引用本文:    
朱德举, 初开丹, 郭帅成, 史才军. 基于海水海砂混凝土真实孔溶液浸泡环境下BFRP筋拉伸性能的退化[J]. 材料导报, 2024, 38(11): 23030043-8.
ZHU Deju, CHU Kaidan, GUO Shuaicheng, SHI Caijun. Tensile Properties Deterioration of BFRP Bars in Real Seawater Sea-sand Concrete Pore Solution Immersion Environment. Materials Reports, 2024, 38(11): 23030043-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030043  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23030043
1 Dong Z Q, Wu G, Xu Y Q. Construction and Building Materials, 2016, 115, 277.
2 Zhang L Z, Sun Y M, Xiong W. Materials and Structures, 2014, 48 (10), 3279.
3 Xu K, Lu C H, Xuan G Y, et al. Materials Reports, 2021, 35(4), 4053 (in Chinese).
徐可, 陆春华, 宣广宇, 等. 材料导报, 2021, 35(4), 4053.
4 Tomlinson D, Fam A. Journal of Composites for Construction, 2015, 19 (2), 04014036.
5 Uomoto T, Mutsuyoshi H, Katsuki F, et al. Journal of Materials in Civil Engineering, 2002, 14 (3), 191.
6 Benmokrane B, Elgabbas F, Ahmed E A, et al. Journal of Composites for Construction, 2015, 19 (6), 04015008.
7 Elgabbas F, Ahmed E A, Benmokrane B. Construction and Building Materials, 2015, 95, 623.
8 Ali A H, Mohamed H M, Benmokrane B, et al. Composites Part B: Engineering, 2019, 157, 248.
9 ASTM D7705/D7705M-12. Standard test method for alkali resistance of fiber reinforced polymer (FRP) matrix composite bars used in concrete construction, West Conshohocken, PA, USA, 2012.
10 ACI 440.3R. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures, American Concrete Institute, Farmington Hills, Michigan, 2012.
11 Serbescu A, Guadagnini M, Pilakoutas K. Journal of Composites for Construction, 2015, 19(2), 04014037.
12 Li Y L, Zhao X L, Singh Raman R K, et al. Construction and Building Materials, 2018, 159, 704.
13 Zhu N S, Jin F N, Kong X L, et al. Construction and Building Mate-rials, 2018, 188, 1085.
14 Xiao J Z, Qiang C B, Nanni A, et al. Construction and Building Mate-rials, 2017, 155, 1101.
15 Geng J Z, Zhu D J, Guo S C, et al. Materials Reports, 2022, 36(3), 21010189 (in Chinese).
耿健智, 朱德举, 郭帅成, 等. 材料导报, 2022, 36(3), 21010189.
16 Cau Dit Coumes C, Courtois S, Nectoux D, et al. Cement and Concrete Research, 2006, 36(12), 2152.
17 Li S, Yin J, Zhang G. Construction and Building Materials, 2020, 249, 118775.
18 Hang T L P, Verdier J, Vidal T, et al. European Journal of Environmental and Civil Engineering, 2017, 23(6), 657.
19 Wang Z K, Zhao X L, Xian G J, et al. Construction and Building Materials, 2017, 156, 985.
20 Wu G, Wang X, Wu Z S, et al. Science and Engineering of Composite Materials, 2015, 22(6), 649.
21 Wu G, Dong Z Q, Wang X, et al. Journal of Composites for Construction, 2015, 19(3), 04014058.
22 Guo F, Al-Saadi S, Singh R R K, et al. Corrosion Science, 2018, 141, 1.
23 Behnood A, Van Tittelboom K, De Belie N. Construction and Building Materials, 2016, 105, 176.
24 Yi Y, Guo S C, Li S, et al. Construction and Building Materials, 2021, 299, 123957.
25 Yi Y, Zhu D J, Guo S C, et al. Cement and Concrete Composites, 2022, 134, 104778.
26 Wu G, Zhu Y, Dong Z Q, et al. China Civil Engineering Journal, 2014, 47(8), 32 (in Chinese).
吴刚, 朱莹, 董志强, 等. 土木工程学报, 2014, 47(8), 32.
27 Li S, Guo S C, Yi Y, et al. Construction and Building Materials, 2021, 307, 124650.
[1] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[2] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[5] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[6] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[7] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[8] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[9] 曹睿, 王恒霖, 秦巍, 刘少尊, 周双双, 刘一波, 王铁军, 闫英杰. FeCrAl合金管TIG焊焊接接头的组织及性能[J]. 材料导报, 2024, 38(2): 22040211-5.
[10] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[11] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[12] 龚翱翔, 徐驰, 安瞻, 佟振峰. 15-15Ti ODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征[J]. 材料导报, 2024, 38(10): 23010111-6.
[13] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[14] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[15] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed