Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23050130-11    https://doi.org/10.11896/cldb.23050130
  高分子与聚合物基复合材料 |
胶原蛋白促进成骨细胞在磷灰石基质上增殖和分化
马彭逸1,2, 李琛1,2, Ouaskioud Oumaima1,2, 任丽1,2,*
1 西北工业大学宁波研究院,浙江省柔性电子重点实验室,浙江 宁波 315103
2 西北工业大学生命学院,空间生物实验模拟技术重点实验室,西安 710072
Collagen Coating Improves the Bioactivity of Apatite Substrate in Osteoblast Proliferation and Differentiation
MA Pengyi1,2, LI Chen1,2, Ouaskioud Oumaima1,2, REN Li1,2,*
1 Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, China
2 Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 36718KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 骨质主要由Ⅰ型胶原和磷灰石组成,并通过骨重建实现更新。在骨重建过程中,逆转期细胞改造破骨细胞留下的骨吸收表面,并沉积一层薄层蛋白质(主要是胶原蛋白)形成逆转线,这是骨吸收与骨形成偶联的必要步骤。胶原层对成骨细胞的生长和新骨质的形成至关重要。为了验证这一假设,本工作利用改良型模拟体液有效地制备了具有连续完整结构的类骨磷灰石基质,然后将该基质以及表面形成薄层胶原蛋白的基质培养成骨样细胞MC3T3-E1并诱导其分化,检测细胞粘附、增殖和两种成骨分化标志物的表达。结果表明,磷灰石基质上的成骨细胞表现出形态收缩、增殖和分化延迟,并倾向于在分化之前分泌更多的胶原蛋白。在形成薄层胶原蛋白的磷灰石基质上,成骨细胞保持铺展形态和较高的增殖率,并在诱导分化后表达高水平的碱性磷酸酶。这很可能表明,在骨重建过程中,逆转期细胞在骨吸收表面的磷灰石骨质上形成胶原蛋白对成骨细胞的附着、增殖和分化很重要。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马彭逸
李琛
Ouaskioud Oumaima
任丽
关键词:  Ⅰ型胶原蛋白  磷灰石  成骨细胞  细胞铺展  细胞增殖  细胞分化    
Abstract: Bone matrix is mainly composed of type I collagen and apatite and undergoes renewal during remodeling. During this process, reversal cells recondition the resorbed surfaces left by osteoclasts and deposit a thin layer of proteins (mainly collagen) to form reversal lines, this is an obligatory step in the link between bone resorption and formation. The collagen layer is critical for osteoblast growth and the formation of new bone matrix. In order to verify the hypothesis, we modified a widely accepted simulated body fluid by increasing the relative proportion of Ca2+ and HPO42- to effectively generate a continuous bone-like apatite substrate. Then the substrates with or without collagen pre-coating were used for MC3T3-E1 osteoblast-like cells culturing and inducing them to differentiate. The cell attachment, proliferation, and the expression of two osteogenic markers were detected. The results indicated that osteoblasts on an apatite substrate showed retracted morphologies and delayed proliferation and differentiation, and tended to secrete more collagen before they were committed to differentiation. After collagen coating of apatite substrates, osteoblasts maintained spreading morphology and higher proliferation rates, and expressed high levels of alkaline phosphatase after differentiation induction. This most probably indicated that the collagen pre-coated on apatite substrates, as deposited on the resorbed surface by reversal cells during bone remodeling, is important for osteoblast attachment, proliferation, and differentiation.
Key words:  type I collagen    apatite    osteoblast    cell spreading    cell proliferation    cell differentiation
发布日期:  2024-06-25
ZTFLH:  Q24  
基金资助: 宁波市自然科学基金(202003N4047);陕西省重点研发计划项目(2023-YBSF-302)
引用本文:    
马彭逸, 李琛, Ouaskioud Oumaima, 任丽. 胶原蛋白促进成骨细胞在磷灰石基质上增殖和分化[J]. 材料导报, 2024, 38(11): 23050130-11.
MA Pengyi, LI Chen, Ouaskioud Oumaima, REN Li. Collagen Coating Improves the Bioactivity of Apatite Substrate in Osteoblast Proliferation and Differentiation. Materials Reports, 2024, 38(11): 23050130-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050130  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23050130
1 Sroga G E, Karim L, Colón W, et al. Molecular & Cellular Proteomics, 2011, 10(9), M110. 006718.
2 Addison W N, Nelea V, Chicatun F, et al. Bone, 2015, 71, 244.
3 Everts V, Delaissé J M, Korper W, et al. Journal of Bone and Mineral Research, 2002, 17(1), 77.
4 Parfitt A M. Metabolic Bone Disease and Related Research, 1982, 4(1), 1.
5 Domon T, Suzuki R, Takata K, et al. Annals of Anatomy, 2001, 183(2), 103.
6 Perrier A, Dumas V, Linossier M T, et al. Bone, 2010, 47(1), 23.
7 Matsuo K, Irie N. Archives of Biochemistry Biophysics, 2008, 473(2), 201.
8 Kristensen H B, Andersen T L, Marcussen N, et al. American Journal of Pathology, 2014, 184(3), 778.
9 Abdelgawad M E, Søe K, Andersen T L, et al. Bone, 2014, 67, 181.
10 He Z, Zhai Q, Hu M, et al. Journal of Orthopaedic Translation, 2015, 3(1), 1.
11 Ducheyne P, Qiu Q. Biomaterials, 1999, 20(23-24), 2287.
12 Cholas R, Padmanabhan S K, Gervaso F, et al. Materials Science & Engineering C-Materials for Biological Applications, 2016, 63, 499.
13 Lin K, Xia L, Gan J, et al. ACS Applied Materials & Interfaces, 2013, 5(16), 8008.
14 Wei G, Ma P X. Biomaterials, 2004, 25(19), 4749.
15 Chou Y F, Huang W, Dunn J C, et al. Biomaterials, 2005, 26(3), 285.
16 Chaudhuri O, Gu L, Klumpers D, et al. Nature Materials, 2016, 15(3), 326.
17 Yang X B, Bhatnagar R S, Li S, et al. Tissue Engineering, 2004, 10(7-8), 1148.
18 Chen Y, Mak A F T, Wang M, et al. Surface & Coatings Technology, 2006, 201(3-4), 575.
19 Murshid S A, Kamioka H, Ishihara Y, et al. Journal of Bone and Mine-ral Metabolism, 2007, 25(3), 151.
20 Tsai S W, Cheng Y H, Chang Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(3), 247.
21 Ren L, Liu W, Wang Y, et al. Analytical Chemistry, 2013, 85(1), 235.
22 Qu H, Wei M. Journal of Biomedecal Materials Research Part B-Applied Biomaterials, 2008, 87(1), 204.
23 Sato K, Kumagai Y, Tanaka J. Journal of Biomedical Materials Research, 2000, 50(1), 16.
24 Murphy W L, Mooney D J. Journal of the American Chemical Society, 2002, 124(9), 1910.
25 Yang C, Li Y, Nan K. Materials Research Bulletin, 2013, 48(3), 1128.
26 Ye Y J, Yin D C, Shang P. Applied Surface Science, 2010, 256(24), 7535.
27 Kim H M, Miyazaki T, Kokubo T, et al. Key Engineering Materials, 2001, 192-195, 47.
28 Lausch A J, Quan B D, Miklas J W, et al. Advanced Functional Materials, 2013, 23(39), 4906.
29 Charles L F, Kramer E R, Shaw M T, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 269.
30 Bigi A, Boanini E, Panzavolta S, et al. Journal of Biomedical Materials Research, 2002, 59(4), 709.
31 Yang L, Li L, Tu Q, et al. Analytical Chemistry, 2010, 82(15), 6430.
32 Posner A S. Physiological Reviews, 1969, 49(4), 760.
33 Mahamid J, Aichmayer B, Shimoni E, et al. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14), 6316.
34 Raafat A I, Saad Eldin A A, Salama A A, et al. Journal of Applied Polymer Science, 2013, 128(3), 1697.
35 Fu R, Liu Q, Song G, et al. Biomedical Materials, 2013, 8(5), 055005.
36 Folkman J, Moscona A. Nature, 1978, 273(5661), 345.
37 Ingber D E. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(9), 3579.
38 Yan C, Sun J, Ding J. Biomaterials, 2011, 32(16), 3931.
39 Dalby M J, Gadegaard N, Oreffo R O. Nature Materials, 2014, 13(6), 558.
40 Franceschi R T, Iyer B S. Journal of Bone and Mineral Research, 1992, 7(2), 235.
41 Connelly J T, Gautrot J E, Trappmann B, et al. Nature Cell Biology, 2010, 12(7), 711.
42 Singhvi R, Kumar A, Lopez G P, et al. Science, 1994, 264(5159), 696.
43 Han W, Zhao J, Tu M, et al. Journal of Applied Polymer Science, 2013, 128(3), 1332.
44 Qi X, Huang Y, Han D, et al. Biomedical Materials, 2016, 11(2), 025005.
45 Bellucci D, Sola A, Gentile P, et al. Journal of Biomedical Materials Research Part A, 2012, 100(12), 3259.
46 Liu Q, Cen L, Yin S, et al. Biomaterials, 2008, 29(36), 4792.
[1] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[2] 李航, 廖建国, 毛艳瑞, 阮文强. 纳米羟基磷灰石对氯氧镁水泥降解性和体外生物活性的影响[J]. 材料导报, 2023, 37(24): 22020189-5.
[3] 韩欣彤, 曹阳, 文峰, 高助威, 李成欣, 于晓龙. 氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究[J]. 材料导报, 2023, 37(14): 22030289-7.
[4] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[5] 吴江松, 谭彦妮, 刘晏军. 羟基磷灰石在传感领域应用的研究进展[J]. 材料导报, 2022, 36(20): 20090296-13.
[6] 张智, 马幼平, 周子凌, 魏花丽, 赵丽娜. 空心球羟基磷灰石等离子喷涂粉体的制备[J]. 材料导报, 2021, 35(2): 2019-2025.
[7] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[8] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[9] 钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
[10] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[11] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[12] 方艳, 徐水, 吴婷芳, 朱勇. 丝胶蛋白/羟基磷灰石/聚己内酯复合支架材料的制备及表征[J]. 材料导报, 2019, 33(Z2): 533-537.
[13] 晋艳茹, 贾庆明, 陕绍云. 羟基磷灰石/纤维素复合材料在骨组织工程中的研究进展[J]. 材料导报, 2019, 33(23): 4008-4015.
[14] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[15] 单文瑞,张玉勤,何正员,蒋业华,. Ti35Nb7Zr-xHA生物复合材料的微观组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 60-64.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed