Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 21110089-5    https://doi.org/10.11896/cldb.21110089
  无机非金属及其复合材料 |
模拟镧系元素固化的掺La2O3玄武岩玻璃的结构与性能研究
童钦1,2,3, 霍冀川1,3,4,*, 张行泉1,4, 霍泳霖1,3, 徐冲1,3, 蒋勤1,3, 宋巍伟1,3
1 西南科技大学环境友好能源材料国家重点实验室,四川 绵阳 621010
2 绵阳师范学院机电工程学院,四川 绵阳 621000
3 西南科技大学材料与化学学院,四川 绵阳 621010
4 西南科技大学分析测试中心,四川 绵阳 621010
Study on Structure and Properties of La2O3-doped Basaltic Glasses for Immobilizing Simulated Lanthanides
TONG Qin1,2,3, HUO Jichuan1,3,4,*, ZHANG Xingquan1,4, HUO Yonglin1,3, XU Chong1,3, JIANG Qin1,3, SONG Weiwei1,3
1 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 Electromechanic Engineering College, Mianyang Teachers’ College, Mianyang 621000, Sichuan, China
3 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
4 Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 6394KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以玄武岩玻璃为基体,使用La元素模拟高水平放射性废物(HLW)中的核素U,采用熔融-热处理的方法制备掺La2O3玄武岩玻璃固化体,研究了不同La2O3含量的玻璃固化体的结构、热稳定性和抗浸出性能的变化。XRD和SEM分析表明,当La2O3含量增加到12%(质量分数)时,所得样品均表现为玻璃相。Raman分析表明,随着La2O3的加入,玻璃网络中多元环和四元环的Si-O-Si键断裂,Al3+反而会更多地参与网络连接,并且La2O3的加入有助于提高玻璃网络的聚合度。根据DSC分析可知,随着La2O3含量的增加,玻璃固化体的结构刚性提高,热稳定性总体来说有所增强。采用产品一致性试验法(Product consistency test,PCT)计算样品的归一化浸出率,结果表明所有样品都具有较好的化学稳定性,La和Fe的浸出率比其他元素低三个数量级。其中,浸出28 d后,样品L12的La元素归一化浸出率最低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
童钦
霍冀川
张行泉
霍泳霖
徐冲
蒋勤
宋巍伟
关键词:  La2O3  玄武岩玻璃  高水平放射性废物  PCT    
Abstract: The La2O3-doped basaltic glass was prepared by the solid-state melt method, which the La element is used to simulate the nuclide U in high-level radioactive waste (HLW). The structure, thermal stability and leaching resistance of basaltic glass with different content of La2O3 were studied. XRD and SEM results show that all the samples are glassy until the content of La2O3 up to 12wt%. Raman results indicate that the addition of La2O3 breaks the Si-O-Si bond of large-membered and four-membered in basaltic glass, but more Al3+ participated in the network connection, resulting in the improvement of the polymerization degree of glass network. DSC results show the rigidity and the thermal stability of basaltic glass increases with the increase of La2O3 content. The aqueous durability of samples was evaluated by the ASTM product consistency test (PCT) method, which shows that all the samples have good leaching resistance, the leaching rates of La in sample L12 is the lowest after 28 days of leaching, and the leaching rates of La and Fe are three orders of magnitude lower than those of the other elements.
Key words:  La2O3    basaltic glass    high-level radioactive waste    PCT
发布日期:  2023-12-19
ZTFLH:  TL941+.33  
基金资助: 环境友好能源材料国家重点实验室资助项目(20fksy08);四川省先进材料重大科技专项项目(2019ZDZX0023)
通讯作者:  *霍冀川,西南科技大学材料与化学学院教授、博士研究生导师。1983年山东建筑材料工业学院无机材料科学与工程系本科毕业,1989年中国科学院长春应用化学研究所物理化学硕士毕业后到西南科技大学工作至今。目前主要从事无机材料、核废物处理等方面的研究工作。发表论文100余篇,出版专著1部,论文包括Journal of Nuc-lear Materials、Ceramics International、Journal of Non-Crystalline Solids、Materials Letters等。huojichuan@swust.edu.cn   
作者简介:  童钦,2012年6月、2015年1月于青岛理工大学分别获得工学学士学位和硕士学位。任职于绵阳师范学院机电工程学院,讲师。现为西南科技大学材料与化学学院博士研究生,在霍冀川教授的指导下进行研究。目前主要研究领域为核废物的处理。
引用本文:    
童钦, 霍冀川, 张行泉, 霍泳霖, 徐冲, 蒋勤, 宋巍伟. 模拟镧系元素固化的掺La2O3玄武岩玻璃的结构与性能研究[J]. 材料导报, 2023, 37(24): 21110089-5.
TONG Qin, HUO Jichuan, ZHANG Xingquan, HUO Yonglin, XU Chong, JIANG Qin, SONG Weiwei. Study on Structure and Properties of La2O3-doped Basaltic Glasses for Immobilizing Simulated Lanthanides. Materials Reports, 2023, 37(24): 21110089-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110089  或          http://www.mater-rep.com/CN/Y2023/V37/I24/21110089
1 Wang Y, Wang F, Wang Q, et al. Journal of Non-Crystalline Solids, 2019, 526, 119726.
2 Gin S, Abdelouas A, Criscenti L, et al. Materials Today, 2013, 16, 243.
3 Day D E, Wu Z, Ray C S, et al. Journal of Non-Crystalline Solids, 1998, 241, 1.
4 Donald I W, Metcalfe B L, Taylor R N J. Journal of Materials Science, 1997, 32, 5851.
5 He Y, Lu Y, Zhang Q. Journal of Nuclear Materials, 2008, 376, 201.
6 Ojovan M I, Lee W E. An introduction to nuclear waste immobilisation, Elsevier Amsterdam, The Netherlands, 2005.
7 Xiao L, Xiao Q, Liu Y, et al. Journal of Alloys and Compounds, 2010, 495, 72.
8 Wang M, Fang L, Li M, et al. Materials Chemistry and Physics, 2016, 179, 304.
9 Lai S C. Magmatic petrology, Higher Education Press, China, 2016 (in Chinese).
赖绍聪. 岩浆岩岩石学, 高等教育出版社, 2016.
10 Liu J X, Cui Y, Yang J P, et al. Journal of Yanshan University, 2017, 41(4), 323 (in Chinese).
刘建勋, 崔瀛, 杨剑平, 等. 燕山大学学报, 2017, 41(4), 323.
11 Li Q L, Zhou Q, Liu Y, et al. Nature, 2021, 600, 54.
12 Tian H C, Wang H, Chen Y, et al. Nature, 2021, 600, 59.
13 Shi F, Hu L, Cui Y, et al. Journal of Physical Chemistry C, 2021, 125, 2097.
14 Qian B, Liang X F, Yang S Y, et al. Chinese Journal of Inorganic Che-mistry, 2013, 29(2), 314 (in Chinese).
钱斌, 梁晓峰, 杨世源, 等. 无机化学学报, 2013, 29(2), 314.
15 Li S, Lu Y, Qu Y, et al. Journal of Non-Crystalline Solids, 2020, 556, 1.
16 Lu Y D, Liu H T, Qu Y, et al. Journal of Materials Science, 2016, 28, 2716.
17 Wang M, Fang L, Li M, et al. Journal of Inorganic Materials, 2017, 32, 643.
18 Xu K, Yan Y, Zhang L, et al. Materials Technology, 2014, 29, A40.
19 ASTM C1285-14. Standard test methods for determining chemical durabi-lity of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics:the product consistency test (PCT), ASTM Internatio-nal:West Conshohocken, PA, USA, 2014.
20 Kline J, Tangstad M, Tranell G. Metallurgical and Materials Transactions B-Process Metallurgy and Materials, 2015, 46B, 62.
21 Lu P, Xia W B, Jiang H, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(3), 878(in Chinese).
鲁鹏, 夏文宝, 姜宏, 等. 硅酸盐通报, 2015, 34(3), 878.
22 Iguchi Y, Kashio S, Goto T, et al. Canadian Metallurgical Quarterly, 1981, 20, 51.
23 Zheng K, Liao J, Wang X, et al. Journal of Non-Crystalline Solids, 2013, 376, 209.
24 Ahmadzadeh M, Scrimshire A, Mottram L, et al. American Mineralogist, 2020, 105, 1375.
25 Bechgaard T K, Mauro J, Bauchy M, et al. Journal of Non-Crystalline Solids, 2017, 461, 24.
26 Noelio O, Walter E F, Anielle C A, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2011, 80, 140.
27 Virgo D, Mysen B O, Kushiro I. Science, 1980, 208(4450), 1371.
28 Abo-Mosallam H, Park H. Materials Letters, 2012, 72, 137.
29 Luo Z W, Lu A X, Han L G. The Chinese Journal of Nonferrous Metals, 2009, 19(11), 2018 (in Chinese).
罗志伟, 卢安贤, 韩立国. 中国有色金属学报, 2009, 19(11), 2018.
30 Tong Q, Huo J C, Zhang X Q, et al. Materials, 2021, 14(16), 4709.
31 Bingham P, Hand R, Forder S. Materials Research Bulletin, 2006, 41, 1622.
32 Li X Y, Tao Y Y, Xiao Z, et al. Journal of Ceramics, 2020, 41(6), 904 (in Chinese).
李秀英, 陶歆月, 肖卓豪, 等. 陶瓷学报, 2020, 41(6), 904.
33 Lafi O A, Imran M M A. Journal of Alloys and Compounds, 2011, 509(16), 5090.
34 Cheng Y, Xiao H N, Guo W M. Materials Science & Engineering A, 2007, 480(1), 56.
35 Geisler T, Janssen A, Scheiter D, et al. Journal of Non-Crystalline Solids, 2010, 356, 1458.
36 Ma T Q, Liang W, Xu H, et al. Journal of Nuclear and Radiochemistry, 2019, 41(5), 411 (in Chinese).
马特奇, 梁威, 徐辉, 等. 核化学与放射化学, 2019, 41(5), 411.
37 EJ 1186-2005. Characterization of radioactive waste bodies and packages, Commission of Science, Technology and Industry for National Defence, Beijing, 2005 (in Chinese).
EJ 1186-2005. 放射性废物体和废物包的特性鉴定, 国防科学技术工业委员会, 北京, 2005.
[1] 周立玉, 李秀兰, 王宣, 曾洪亮, 余杰. AZ31镁合金固态扩渗La2O3+Zn渗层组织演化过程研究[J]. 材料导报, 2020, 34(18): 18093-18097.
[2] 尹月, 马北越, 张博文, 李世明, 于景坤, 张战, 李光强. 添加La2O3对粉煤灰合成Al2O3-SiC复合粉体的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 111-114.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed