Study on Structure and Properties of La2O3-doped Basaltic Glasses for Immobilizing Simulated Lanthanides
TONG Qin1,2,3, HUO Jichuan1,3,4,*, ZHANG Xingquan1,4, HUO Yonglin1,3, XU Chong1,3, JIANG Qin1,3, SONG Weiwei1,3
1 State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 2 Electromechanic Engineering College, Mianyang Teachers’ College, Mianyang 621000, Sichuan, China 3 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 4 Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
Abstract: The La2O3-doped basaltic glass was prepared by the solid-state melt method, which the La element is used to simulate the nuclide U in high-level radioactive waste (HLW). The structure, thermal stability and leaching resistance of basaltic glass with different content of La2O3 were studied. XRD and SEM results show that all the samples are glassy until the content of La2O3 up to 12wt%. Raman results indicate that the addition of La2O3 breaks the Si-O-Si bond of large-membered and four-membered in basaltic glass, but more Al3+ participated in the network connection, resulting in the improvement of the polymerization degree of glass network. DSC results show the rigidity and the thermal stability of basaltic glass increases with the increase of La2O3 content. The aqueous durability of samples was evaluated by the ASTM product consistency test (PCT) method, which shows that all the samples have good leaching resistance, the leaching rates of La in sample L12 is the lowest after 28 days of leaching, and the leaching rates of La and Fe are three orders of magnitude lower than those of the other elements.
通讯作者:
*霍冀川,西南科技大学材料与化学学院教授、博士研究生导师。1983年山东建筑材料工业学院无机材料科学与工程系本科毕业,1989年中国科学院长春应用化学研究所物理化学硕士毕业后到西南科技大学工作至今。目前主要从事无机材料、核废物处理等方面的研究工作。发表论文100余篇,出版专著1部,论文包括Journal of Nuc-lear Materials、Ceramics International、Journal of Non-Crystalline Solids、Materials Letters等。huojichuan@swust.edu.cn
1 Wang Y, Wang F, Wang Q, et al. Journal of Non-Crystalline Solids, 2019, 526, 119726. 2 Gin S, Abdelouas A, Criscenti L, et al. Materials Today, 2013, 16, 243. 3 Day D E, Wu Z, Ray C S, et al. Journal of Non-Crystalline Solids, 1998, 241, 1. 4 Donald I W, Metcalfe B L, Taylor R N J. Journal of Materials Science, 1997, 32, 5851. 5 He Y, Lu Y, Zhang Q. Journal of Nuclear Materials, 2008, 376, 201. 6 Ojovan M I, Lee W E. An introduction to nuclear waste immobilisation, Elsevier Amsterdam, The Netherlands, 2005. 7 Xiao L, Xiao Q, Liu Y, et al. Journal of Alloys and Compounds, 2010, 495, 72. 8 Wang M, Fang L, Li M, et al. Materials Chemistry and Physics, 2016, 179, 304. 9 Lai S C. Magmatic petrology, Higher Education Press, China, 2016 (in Chinese). 赖绍聪. 岩浆岩岩石学, 高等教育出版社, 2016. 10 Liu J X, Cui Y, Yang J P, et al. Journal of Yanshan University, 2017, 41(4), 323 (in Chinese). 刘建勋, 崔瀛, 杨剑平, 等. 燕山大学学报, 2017, 41(4), 323. 11 Li Q L, Zhou Q, Liu Y, et al. Nature, 2021, 600, 54. 12 Tian H C, Wang H, Chen Y, et al. Nature, 2021, 600, 59. 13 Shi F, Hu L, Cui Y, et al. Journal of Physical Chemistry C, 2021, 125, 2097. 14 Qian B, Liang X F, Yang S Y, et al. Chinese Journal of Inorganic Che-mistry, 2013, 29(2), 314 (in Chinese). 钱斌, 梁晓峰, 杨世源, 等. 无机化学学报, 2013, 29(2), 314. 15 Li S, Lu Y, Qu Y, et al. Journal of Non-Crystalline Solids, 2020, 556, 1. 16 Lu Y D, Liu H T, Qu Y, et al. Journal of Materials Science, 2016, 28, 2716. 17 Wang M, Fang L, Li M, et al. Journal of Inorganic Materials, 2017, 32, 643. 18 Xu K, Yan Y, Zhang L, et al. Materials Technology, 2014, 29, A40. 19 ASTM C1285-14. Standard test methods for determining chemical durabi-lity of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics:the product consistency test (PCT), ASTM Internatio-nal:West Conshohocken, PA, USA, 2014. 20 Kline J, Tangstad M, Tranell G. Metallurgical and Materials Transactions B-Process Metallurgy and Materials, 2015, 46B, 62. 21 Lu P, Xia W B, Jiang H, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(3), 878(in Chinese). 鲁鹏, 夏文宝, 姜宏, 等. 硅酸盐通报, 2015, 34(3), 878. 22 Iguchi Y, Kashio S, Goto T, et al. Canadian Metallurgical Quarterly, 1981, 20, 51. 23 Zheng K, Liao J, Wang X, et al. Journal of Non-Crystalline Solids, 2013, 376, 209. 24 Ahmadzadeh M, Scrimshire A, Mottram L, et al. American Mineralogist, 2020, 105, 1375. 25 Bechgaard T K, Mauro J, Bauchy M, et al. Journal of Non-Crystalline Solids, 2017, 461, 24. 26 Noelio O, Walter E F, Anielle C A, et al. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2011, 80, 140. 27 Virgo D, Mysen B O, Kushiro I. Science, 1980, 208(4450), 1371. 28 Abo-Mosallam H, Park H. Materials Letters, 2012, 72, 137. 29 Luo Z W, Lu A X, Han L G. The Chinese Journal of Nonferrous Metals, 2009, 19(11), 2018 (in Chinese). 罗志伟, 卢安贤, 韩立国. 中国有色金属学报, 2009, 19(11), 2018. 30 Tong Q, Huo J C, Zhang X Q, et al. Materials, 2021, 14(16), 4709. 31 Bingham P, Hand R, Forder S. Materials Research Bulletin, 2006, 41, 1622. 32 Li X Y, Tao Y Y, Xiao Z, et al. Journal of Ceramics, 2020, 41(6), 904 (in Chinese). 李秀英, 陶歆月, 肖卓豪, 等. 陶瓷学报, 2020, 41(6), 904. 33 Lafi O A, Imran M M A. Journal of Alloys and Compounds, 2011, 509(16), 5090. 34 Cheng Y, Xiao H N, Guo W M. Materials Science & Engineering A, 2007, 480(1), 56. 35 Geisler T, Janssen A, Scheiter D, et al. Journal of Non-Crystalline Solids, 2010, 356, 1458. 36 Ma T Q, Liang W, Xu H, et al. Journal of Nuclear and Radiochemistry, 2019, 41(5), 411 (in Chinese). 马特奇, 梁威, 徐辉, 等. 核化学与放射化学, 2019, 41(5), 411. 37 EJ 1186-2005. Characterization of radioactive waste bodies and packages, Commission of Science, Technology and Industry for National Defence, Beijing, 2005 (in Chinese). EJ 1186-2005. 放射性废物体和废物包的特性鉴定, 国防科学技术工业委员会, 北京, 2005.