Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21110130-6    https://doi.org/10.11896/cldb.21110130
  金属与金属基复合材料 |
箍筋弯折时的初期损伤及其对力学性能的影响
郑玉龙1, 刘翔1, 陆春华1,*, 步森壮1, 幸左贤二2
1 江苏大学土木工程与力学学院,江苏 镇江 212013
2 九州工业大学建设社会工学科,日本 北九州 8038501
Incipient Damage When Bending Stirrup and Its Influence on Mechanical Properties
ZHENG Yulong1, LIU Xiang1, LU Chunhua1,*, BU Senzhuang1, KOSA Kenji2
1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, Jiangsu, China
2 Department of Civil and Architectural Engineering, Kyushu Institute of Technology, Kitakyushu 8038501, Japan
下载:  全 文 ( PDF ) ( 11808KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土病害性膨胀下构件内部箍筋角部的脆断被认为与钢筋弯折过程中的初期损伤有关,值得深入研究。本工作针对常用带肋钢筋,通过加工参量下的90°弯折试验发现,钢筋横肋根部出现最大长度约占直径2.52%的初期裂纹。弯折钢筋的拉伸试验表明,因初期裂纹扩展,试件均在极限拉伸前形成早期断裂,且断裂强度最低仅为极限拉伸强度的60%。由断口分析得出,弯折钢筋最小断面收缩率仅为正常直钢筋的34%,且断口呈典型的脆性特征。长期服役会进一步加剧箍筋角部强度及塑性变形性能的劣化。本研究将为进一步优化弯折钢筋的工程应用和力学性能设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑玉龙
刘翔
陆春华
步森壮
幸左贤二
关键词:  混凝土耐久性  钢筋脆断  初期损伤  时效作用  力学性能    
Abstract: The brittle fracture of stirrup inside the structural member under the action of concrete disease expansion is considered to be related to the incipient damage formed during the bending process of the reinforcing bars, and it is worthy of in-depth study. Commonly used ribbed bars are utilized to carry out 90° bending tests under various processing parameters. It was found that the incipient cracks occurred with the maximum length accounting for 2.52% of the reinforcing bar diameter. Through the tensile test of the bent reinforcing bar, it can be learned that all specimens experienced an early fracture due to the progress of the incipient crack, with the minimum fracture strength as only 60% of the ultimate tensile strength. According to the analysis of the fracture surface, the minimum section shrinkage rate of the bent reinforcing bar was only 34% of the normal straight reinforcing bar, and the fracture surface showed a typical brittle characteristic. The long-term service can further aggravate the deteriorations of strength and plastic deformation property in the corner stirrup. This research will provide a reference for further optimizing the engineering application and mechanical properties design of bent steel bars.
Key words:  concrete durability    brittle fracture of stirrup    incipient damage    aging effect    mechanical property
发布日期:  2022-12-09
ZTFLH:  TU502+6  
基金资助: 国家自然科学基金(52108147;51878319);江苏省博士后科研资助计划(2020Z350);江苏大学高级人才基金(20JDG19)
通讯作者:  *lch79@ujs.edu.cn   
作者简介:  郑玉龙,教授,硕士研究生导师,于2013年及2016年分别获得九州工业大学的硕士和博士学位,现任职于江苏大学土木工程与力学学院,主要研究方向为混凝土结构基本性能及耐久性、工业废弃物再利用等。近年来,主持并参与近10项国家自然科学基金等国内外科研项目,在Construction and Building MaterialsStructures、日本土木学会论文集及构造工学论文集等国内外知名期刊上发表SCI收录等论文40余篇,受理授权国内外发明专利5项。
陆春华,教授,博士研究生导师,于2006年及2011年分别获得江苏大学的硕士和浙江大学的博士学位,现为江苏大学土木工程学科带头人,主要研究方向是混凝土结构基本性能及耐久性、FRP筋在混凝土结构中的应用。近年来,主持国家自然科学基金项目3项,在Composite Structures,Journal of Materials in Civil Engineering, Construction and Buil-ding Materials, Magazine of Concrete Research, 《土木工程学报》《建筑结构学报》以及《中国公路学报》等国内外知名期刊上发表SCI、EI收录论文30余篇,出版学术专著2部,授权中国专利5项。
引用本文:    
郑玉龙, 刘翔, 陆春华, 步森壮, 幸左贤二. 箍筋弯折时的初期损伤及其对力学性能的影响[J]. 材料导报, 2022, 36(23): 21110130-6.
ZHENG Yulong, LIU Xiang, LU Chunhua, BU Senzhuang, KOSA Kenji. Incipient Damage When Bending Stirrup and Its Influence on Mechanical Properties. Materials Reports, 2022, 36(23): 21110130-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110130  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21110130
1 Aryan H, Gencturk B.Engineering Structures, 2021, 235, 112020.
2 Zheng Y, Wang A G, Liu K W, et al.Journal of Building Materials, 2021, 24(6), 10 (in Chinese).
郑毅, 王爱国, 刘开伟,等. 建筑材料学报, 2021, 24(6), 10.
3 Xu G, Gong C, Liu J, et al.Journal of Building Materials, 2020, 23(3), 552 (in Chinese).
徐港, 龚朝, 刘俊, 等. 建筑材料学报, 2020, 23(3), 552.
4 Miyagawa T.Construction and Building Materials, 2013, 39, 105.
5 Gu X L, Hua J, Cai M.Engineering Structures, 2020, 206(8), 110173.
6 Torii K, Yamato H, Liu T. In:International Conference on Durability of Concrete Structures. Hangzhou, 2008,pp. 453.
7 Guo R, Wang F M, Sun L J.Heat Treatment of Metals, 2021, 46(10), 257 (in Chinese).
郭然,王福明,孙丽娟. 金属热处理, 2021, 46(10), 257.
8 Erasmus A, Pussegoda N.New Zealand Engineering. 1977,32(8), 178.
9 Yang C, Xue X, Zhang H Y, et al. Journal of Building Structures, 2018, 39(7), 8 (in Chinese).
杨成, 薛昕, 张瀚引,等. 建筑结构学报, 2018, 39(7), 8.
10 Sasaki K. Investigation on the cause of reinforcement breakage in reinforced concrete structures under the alkali-aggregate reaction and study of the maintenance methods. Ph.D. Thesis, Kyoto University, Japan, 2011.
11 Kenji K, Kawashima Y, Goda H, et al. Proceedings of the Japan Concrete Institute, 2008, 64(2), 371.
12 Nakajima T, Kubo Z, Torii K. Proceedings of the Japan Concrete Institute, 2003, 25(1), 1535.
13 American Concrete Institute. ACI 318-11 Building Code Requirement for Structural Concrete and Commentary. USA, 2011.
14 British Standards Institution.BS EN 1992-1-1: 2004 Eurocode 2: Design of Concrete Structures Part 1-1: General rules and rules for buildings. London, 2004.
15 Japan Society of Civil Engineer. JSCE Standard Specifications for Concrete Structures-2012, Design. Tokyo, 2012.
16 Yu Y N.Metallography principle, Metallurgical Industry Press, China, 2013, pp. 65 (in Chinese).
余永宁. 金属学原理, 冶金工业出版社, 2013, pp. 65.
17 Hundy B B.Iron Steel Inst, 1954, 178, 34.
18 Baird J D.Metallurgical Reviews, 1971, 16(1), 1.
19 Shinno Y, Kenji K, Matsumoto S, et al. Proceedings of the Japan Concrete Institute, 2004, 26, 963.
20 Zhong Q P, Zhao Z H.Fractography, Higher Education Press, China, 2006, pp.131(in Chinese).
钟群鹏, 赵子华. 断口学, 高等教育出版社, 2006, pp.131.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[14] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed