Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1711-1715    https://doi.org/10.11896/j.issn.1005-023X.2018.10.027
  材料研究 |
矿物掺合料对地聚合物抗冻性能的影响
李 三1,2,彭小芹1,苟 菁1,周 淦1,黄 婷1,陈 洋1,王淑萍1
1 重庆大学材料科学与工程学院,重庆 400045;
2 重庆六方建设工程质量检测有限公司,重庆 401346
Effect of Mineral Admixtures Incorporation on Frost Resistance of Geopolymer
LI San1,2, PENG Xiaoqin1, GOU Jing1, ZHOU Gan1, HUANG Ting1, CHEN Yang1,WANG Shuping1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 Chongqing Liufang Construction Engineering Quality Detection Limited Company, Chongqing 401346
下载:  全 文 ( PDF ) ( 3135KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碱激发偏高岭土制备地聚合物混凝土,分别研究了掺入15%的钢渣、矿渣或粉煤灰的地聚合物混凝土的力学抗压强度和抗冻性能,测试了地聚合物混凝土的真空饱水体积吸液率,运用XRD、SEM和DSC-TG等测试方法分析了矿物掺合料对地聚合物微观结构和水化产物的影响。结果表明:钢渣或矿渣能有效提高地聚合物混凝土的抗压强度,而粉煤灰的掺入使其强度稍有降低;地聚合物表观形貌中存在较多的孔洞和微裂缝导致其抗冻性能较差,掺入钢渣或者矿渣后地聚合物形成了新的产物C-S-H凝胶、C-A-S-H凝胶等并填充在结构中形成更加密实的板状结构,降低了地聚合物混凝土冻融破坏速率,五次冻融循环后地聚合物的相对强度均在90%以上,抗冻性能得到提高;粉煤灰降低了制备地聚合物混凝土的用水量且未水化的粉煤灰颗粒镶嵌在结构中增加了其密实性和抗冻性能,五次冻融循环后相对强度为86.9%,基准组的相对强度仅为79.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李 三
彭小芹
苟 菁
周 淦
黄 婷
陈 洋
王淑萍
关键词:  抗冻性能  地聚合物  矿物掺合料  微观结构    
Abstract: Geopolymer concrete was prepared with metakaolin and alkali-activator. The compressive strength and frost resis-tance of geopolymer concrete with a dosage of steel slag, slag or fly ash of 15% was studied and the vacuum volume aspiration ratio of geopolymer concrete was tested. XRD, SEM and DSC-TG analyses were used to investigate the effect of mineral admixtures incorporation on the microstructures and hydration products of geopolymer. The results showed that the compressive strength of geopolymer concrete is effectively improved by steel slag or slag, but the fly ash could make it slightly decrease. The poor resistance of frost can be attributed to the pores and microcracks exist on the surface of geopolymer. The adding of steel slag or slag forms the hydration products such as C-S-H, C-A-S-H gel which fill in the pores can delay its rate of destruction induced by the cycle of freezing and thawing and improve the frost resistance of geopolymer, it maintains relative strength in 90% after 5 freeze-thaw cycles. The fly ash reduces the water consumption to prepare concrete and the unhydrated fly ash particles embedded in the structure contributes to the improvement of density and frost resistance, as the geopolymer concrete maintained 86.9% strength after 5 freeze-thaw cycle, and 79.7% for the control group.
Key words:  frost resistance    geopolymer    mineral admixture    microstructure
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TU52  
基金资助: 国家自然科学基金(51678093);重庆大学大学生科研训练计划项目(CQU-SRTP-2015219)
通讯作者:  彭小芹:通信作者,女,1956年生,博士,教授,主要研究方向为建筑材料 E-mail:pxq01@cqu.edu.cn   
作者简介:  李三:男,1991年生,硕士,主要研究方向为建筑材料 E-mail:ls0501@cqu.edu.cn
引用本文:    
李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
LI San, PENG Xiaoqin, GOU Jing, ZHOU Gan, HUANG Ting, CHEN Yang,WANG Shuping. Effect of Mineral Admixtures Incorporation on Frost Resistance of Geopolymer. Materials Reports, 2018, 32(10): 1711-1715.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.027  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1711
1 Davidovits J. Early high-strength mineral polymer: US,4509985[P].1985-04-09.
2 Davidovits J.Genpolymers: Inorganic polymeric new materials [J]. Journal of Thermal Analysis,1991,37:1633.
3 Li Z, Zhu D, Zhang Y S. Development of sustainable cementitious materials[C]∥International Workshop on Sustainable Development and Concrete Technology. Beijing,2004.
4 Duxson P, Provis J L, Lukey G C, et al. The role of inorganic polymer technology in the development of ‘green concrete’[J]. Cement and Concrete Research,2007,37:1590.
5 Dai Xinxiang, Wen Ziyun. Study state of geopolymeric cement and its application[J].Cement,2001(10):11(in Chinese).
代新祥,文梓芸.土聚水泥的应用及研究现状[J].水泥,2001(10):11.
6 Yang Wencui. Effect of inorganic salts on pore structure and frost resistance of concrete[D]. Harbin: Harbin Institute of Technology,2009(in Chinese).
杨文萃.无机盐对混凝土孔结构和抗冻性影响的研究[D].哈尔滨:哈尔宾工业大学,2009.
7 文梓芸,钱春香,等.混凝土工程与技术[M].武汉:武汉理工大学出版社,2004:38.
8 Deventer J S J V,Provis J L, Duxson P, et al. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials[J]. Waste Biomass Valor,2010,1:145.
9 Li Kuan, Lu Duyou, Li Menghao, et al. Effect of water content on microstructure and reaction process of metakaolin-based geopolymers[J]. Journal of the Chinese Ceramic Society,2016,44(2):226(in Chinese).
李款,卢都友,李孟浩,等.用水量对偏高岭土基地聚合物微观结构及反应过程的影响[J].硅酸盐学报,2016,44(2):226.
10 杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000:235.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[5] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[6] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[7] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[10] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[11] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[12] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[13] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[14] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[15] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed