Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 72-79    https://doi.org/10.11896/j.issn.1005-023X.2017.019.010
  材料综述 |
新型高温合金718Plus的性能特点、航空应用和发展趋势
王妙全, 田成刚, 南洋, 徐瑶, 杨国宝, 童锦艳
中国航发商用航空发动机有限责任公司,上海 201108
A Review on 718Plus, the New Superalloy: Performance, Aerospace Application and Development Trend
WANG Miaoquan, TIAN Chenggang, NAN Yang, XU Yao, YANG Guobao, TONG Jinyan
AECC Commercial Aircraft Engine Co., Ltd, Shanghai 201108
下载:  全 文 ( PDF ) ( 1952KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 718Plus合金凭借其优异的力学性能、较高的耐温能力、良好的加工性和适宜的制造成本,有效填补了IN718和Waspaloy合金之间长期以来存在的合金空白,逐渐应用于高性能航空发动机零部件制造。详细阐述了新型高温合金718Plus的性能特点,包括化学成分、析出相、热处理制度和力学性能等。此外,还总结了718Plus合金的制造成本和航空应用情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王妙全
田成刚
南洋
徐瑶
杨国宝
童锦艳
关键词:  718Plus合金  γ′相  力学性能  制造成本  航空应用    
Abstract: 718Plus alloy, with its excellent mechanical properties, high temperature resistance, good processability and appropriate manufacturing cost, effectively fills the long-standing alloy blank between alloy IN718 and Waspaloy, and has been gradually applied to manufacturing high performance engine parts. In this paper, the performance characteristics of alloy 718Plus are described in detail, including its chemical composition, precipitation phase, heat treatment and mechanical properties. In addition, the manufacturing cost and its aerospace application are also summarized.
Key words:  718Plus alloy    γ′ phase    mechanical properties    manufacture cost    aerospace application
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB31  
作者简介:  王妙全:男,1982年生,硕士,工程师,主要从事商用航空发动机高温合金材料研究和航空发动机材料工艺标准体系研究 Tel:021-33367199 E-mail:miaoquanw@126.com
引用本文:    
王妙全, 田成刚, 南洋, 徐瑶, 杨国宝, 童锦艳. 新型高温合金718Plus的性能特点、航空应用和发展趋势[J]. 《材料导报》期刊社, 2017, 31(19): 72-79.
WANG Miaoquan, TIAN Chenggang, NAN Yang, XU Yao, YANG Guobao, TONG Jinyan. A Review on 718Plus, the New Superalloy: Performance, Aerospace Application and Development Trend. Materials Reports, 2017, 31(19): 72-79.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.010  或          https://www.mater-rep.com/CN/Y2017/V31/I19/72
1 Schafrik R E, Ward D D, Groh J R. Application of alloy 718 in GE aircraft engines: Past, present and next five years[J]. Superalloys,DOI:10.7449/2001/Superalloys_2001_1_11.
2 Paulonis D F, Schirra J J. Alloy 718 at Pratt & Whitney-historical perspective and future challenges[J]. Superalloys,DOI:10.7449/2001/Superalloys_ 2001_13_23.
3 Collier J P, Selius A O, Tien J K. On developing a microstructurally and thermally stable iron-nickel base superalloy[J]. Superalloys, DOI:10.7449/1988/Superalloys_ 1988_43_52.
4 Manriquez J A, Bretz P L, Rabenberg L, et al. The high temperature stability of IN718 derivative alloys[J]. Superalloys, DOI:10.7449/1992/Superalloys_1992_507_516.
5 Kennedy R L, Cao W D, Bayha T D, et al. Developments in wrought Nb containing superalloys (718 + 100°F)[C]∥Procee-dings of the International Symposium on Niobium for High Tempe-rature Applications. Araxa, Brazil,2003:11.
6 Cao W D, Kennedy R L. Role of chemistry in 718 type alloys—Allvac-718Plus® development[C]∥ Presented at Superalloys 2004, Seven Springs Conference, Seven Springs, TMS. PA,2004:91.
7 Cao W D, Kennedy R L. New developments in wrought 718-type superalloys[J]. Acta Metall Sin (English Letters),2005,18(1):39.
8 Wang M Q, Deng Q, Du J H, et al. Domestic research progress of ATI 718Plus alloy[J]. Rare Met Mater Eng,2016,45(12):3335(in Chinese).
王民庆, 邓群, 杜金辉,等. ATI 718Plus合金国内研究进展[J]. 稀有金属材料与工程, 2016, 45(12):3335.
9 Cao W D,Kennedy R L.Production evaluation of 718-ER alloy[C]∥Ninth International Symposium on Superalloys 2000, TMS (The Minerals, Metals & Materials Society). PA,2000:101.
10 Kennedy R L. Allvac 718PlusTM, superalloy for the next forty years[C]∥Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives, TMS. Pennsylvania,2005:1.
11 Wang M Q, Du J H, Deng Q, et al. The effect of aluminum on microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater Trans,2015,56(5):635.
12 Liu X, et al. Molecular dynamics simulation on phosphorus behavior at Ni grain boundary[J]. Scr Mater,1999,42(2):189.
13 Dong J X, Zhang M C, Xie X S, et al. Interfacial segregation and cosegregation behaviour in a nickel-base alloy 718[J]. Mater Sci Eng A,2002,328(1-2):8.
14 Zheng L, Xu T D, Deng Q, et al. Experimental study on the characteristic of grain-boundary segregation of phosphorus in Ni-base superalloy[J]. Mater Lett,2008,62(1):54.
15 Ping D H, et al. Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy[J]. Mater Sci Eng A,2007,456(1-2):99.
16 Yamaguchi M, et al. Grain boundary decohesion by impurity segregation in a nickel-sulfur system[J]. Science,2005,307(5708):393.
17 Andrieu E, Cozar R, Pineau A. Effect of environment and microstructure on the high temperature behavior of alloy 718[J]. Superalloys 718, 625 and various derivatives, 1989: 241. DOI:10.7449/1989/superalloys_1989_241_256.
18 Andrieu E, Wang N, Molins R, Pineau A. Influence of compositio-nal modifications on thermal stability of alloy 718[C]∥Superalloys 718, 625, 706 and Various Derivatives, TMS (The Minerals, Metals & Mat-erials Society). Warrendale, PA,1994:695.
19 Chang K M, Nahm A H. Rene 220: 100 °F improvement over alloy 718[J]. Superalloy 718: Metallurgy and Applications, 1989: 631. DOI:10.7449/1989/superalloys_1989_631_646.
20 Xie X S, Wang G L, Dong J X, et al. Structure stability study on a newly developed nickel-base superalloy-allvac® 718PlusTM[C]∥Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, TMS. Pittsburgh, Pennsylvania,2005:179.
21 Pickering E J, Mathur H, Bhowmik A, et al. Grain-boundary precipitation in Allvac 718Plus[J]. Acta Mater,2012,60(6):2757.
22 Wang M Q, Du J H, Deng Q, et al. The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater Sci Eng A,2015,626:382.
23 Jeniski R A, Kennedy R L. Development of ATI Allvac® 718Plus® alloy and applications[C]∥Second Symposium on Recent Advantages of Nb-Containing Materials in Europe.2006:1.
24 Cao W D. Solidification and solid state phase transformation of Allvac® 718PlusTM alloy[J]. Superalloys 718, 625, 706 and Derivatives 2005 edited by Loria E A, TMS (The Minerals, Metals & Materials Society).2005:165.
25 Wang M Q, Du J H, Deng Q, et al. Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus[J]. J Alloys Compd,2017,701:635.
26 Liu X, Xu J, Deem N, et al. Effect of thermal-mechanical treatment on the fatigue crack propagation behavior of newly developed Allvac 718Plus alloy[J]. Delta,2005,10:100.
27 Liu X, Rangararan S, Barbero E, et al. Superalloys 2004[C]∥The Seven Springs Conference, Seven Springs, TMS (The Minerals, Metals & Materials Society). PA,2004:283.
28 Bond B J, Kennedy R L. Evaluation of Allvac® 718PlusTM alloy in the cold worked and heat treated condition[C]∥Sixth International Special Emphasis Symposium on Superalloys 718,625, 706 and Derivatives edited by Loria E A, TMS (The Minerals, Metals & Materials Society).2006: 203.
29 Lemsky J, Kloske K, Bayha T, et al. Press forging of alloy 718PlusTM (abstract only)[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives edited by Loria E A, TMS (The Minerals, Metals & Materials Society). Pittsburgh, PA,2005:709.
30 Bergstrom D S, Bayha T D. Properties and microstructure of Allvac® 718PlusTM alloy rolled sheet[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives, TMS (The Minerals, Metals & Materials Society). Pittsburgh, PA,2005:243.
31 Fawley R W, et al. Evaluating the resistance of Rene 41 to strain-age cracking (Rene 41 resistance to strain-age cracking during post-weld heat treatment)[J]. Welding Res Council Bull,1970,150:1.
32 Klarstrom D L, Ishwar V R, Rowe M D. Properties, weldability and applications of advanced wrought superalloys for gas turbine engines[J]. Acta Metall Sin,2005,18(1):1.
33 Vishwakarma K R, Richards N L, et al. Microstructural analysis of fusion and heat affected zones in electron beam welded Allvac® 718PlusTM superalloy[J]. Mater Sci Eng A,2008, 480(1):517.
34 Idowu O A, Ojo O A, et al. Crack-free electron beam welding of Allvac 718Plus® superalloy[J]. Weld J,2009,88(9):179.
35 Andersson J, Sjöberg G P. Repair welding of wrought superalloys: alloy 718, Allvac 718Plus and Waspaloy[J]. Sci Technol Weld J,2012,17(1):49.
36 Idowu O A. Heat affected zone cracking of Allvac 718Plus superalloy during high power beam welding and post-weld heat treatment[D]. Winnipeg: University of Manitoba,2010.
37 Idowu O A, Ojo O A, Chaturvedi M C. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy[J]. Mater Sci Eng A,2007,454:389.
38 Sun J, Liu X, Tong Y, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding[J]. Mater Des,2014,63:519.
39 Vishwakarma K R, Richards N L, et al. HAZ microfissuring in EB welded allvac 718PlusTM alloy[C]∥Sixth Internatinal Symposium on Superalloys 718, 625, 706 and Derivatives, TMS (The Minerals, Metals & Materials Society). Warrendale,2005:637.
40 Asala G, Ojo O A. On post-weld heat treatment cracking in TIG welded superalloy ATI 718Plus[J]. Results Phys,2016,6:196.
41 Unocic K A, Hayes R W, Mills M J, et al. Microstructural features leading to enhanced resistance to grain boundary creep cracking in Allvac 718Plus[J]. Metall Mater Trans A, 2010,41(2):409.
42 Bayha T D, Lu M, Kloshe K E. Investment casting of Allvac® 718PlusTM alloy[C]∥Sixth International Special Emphasis Sympo-sium on Superalloys 718, 625, 706 and Derivatives, edited by Loria E A, TMS. Pittsburgh, PA,2005:223.
43 Uzgur S C, Uzunonat Y, Diltemiz S F, et al. State-of-art technology Allvac 718Plus superalloy for gas turbine engine parts[J].Adv Mater Res,2011,213:131.
44 Dempster I, Cao W D, Kennedy R L, et al. Structure and property comparison of Allvac® 718PlusTM alloy and Waspaloy forgings[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives, edited by Loria E A, TMS. Pittsburgh, PA,2005:155.
45 Schreiber K, Loehnert K, Singer R F. Opportunities and challenges for the new nickel base alloy 718PlusTM [C]∥Proceedings of Second Symposium on Recent Advantages of Nb-Containing Materials in Europe: Aerospace Applications—A Technical and Commercial Perspective. Essen, Germany,2006.
46 Ott E A, Groh J, Sizek H. Metals affordability initiative: Application of Allvac® 718Plus® alloy for aircraft engine static structural components[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives, TMS. Pittsburgh, PA,2005:35.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed