Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 72-79    https://doi.org/10.11896/j.issn.1005-023X.2017.019.010
  材料综述 |
新型高温合金718Plus的性能特点、航空应用和发展趋势
王妙全, 田成刚, 南洋, 徐瑶, 杨国宝, 童锦艳
中国航发商用航空发动机有限责任公司,上海 201108
A Review on 718Plus, the New Superalloy: Performance, Aerospace Application and Development Trend
WANG Miaoquan, TIAN Chenggang, NAN Yang, XU Yao, YANG Guobao, TONG Jinyan
AECC Commercial Aircraft Engine Co., Ltd, Shanghai 201108
下载:  全 文 ( PDF ) ( 1952KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 718Plus合金凭借其优异的力学性能、较高的耐温能力、良好的加工性和适宜的制造成本,有效填补了IN718和Waspaloy合金之间长期以来存在的合金空白,逐渐应用于高性能航空发动机零部件制造。详细阐述了新型高温合金718Plus的性能特点,包括化学成分、析出相、热处理制度和力学性能等。此外,还总结了718Plus合金的制造成本和航空应用情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王妙全
田成刚
南洋
徐瑶
杨国宝
童锦艳
关键词:  718Plus合金  γ′相  力学性能  制造成本  航空应用    
Abstract: 718Plus alloy, with its excellent mechanical properties, high temperature resistance, good processability and appropriate manufacturing cost, effectively fills the long-standing alloy blank between alloy IN718 and Waspaloy, and has been gradually applied to manufacturing high performance engine parts. In this paper, the performance characteristics of alloy 718Plus are described in detail, including its chemical composition, precipitation phase, heat treatment and mechanical properties. In addition, the manufacturing cost and its aerospace application are also summarized.
Key words:  718Plus alloy    γ′ phase    mechanical properties    manufacture cost    aerospace application
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB31  
作者简介:  王妙全:男,1982年生,硕士,工程师,主要从事商用航空发动机高温合金材料研究和航空发动机材料工艺标准体系研究 Tel:021-33367199 E-mail:miaoquanw@126.com
引用本文:    
王妙全, 田成刚, 南洋, 徐瑶, 杨国宝, 童锦艳. 新型高温合金718Plus的性能特点、航空应用和发展趋势[J]. 《材料导报》期刊社, 2017, 31(19): 72-79.
WANG Miaoquan, TIAN Chenggang, NAN Yang, XU Yao, YANG Guobao, TONG Jinyan. A Review on 718Plus, the New Superalloy: Performance, Aerospace Application and Development Trend. Materials Reports, 2017, 31(19): 72-79.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.010  或          http://www.mater-rep.com/CN/Y2017/V31/I19/72
1 Schafrik R E, Ward D D, Groh J R. Application of alloy 718 in GE aircraft engines: Past, present and next five years[J]. Superalloys,DOI:10.7449/2001/Superalloys_2001_1_11.
2 Paulonis D F, Schirra J J. Alloy 718 at Pratt & Whitney-historical perspective and future challenges[J]. Superalloys,DOI:10.7449/2001/Superalloys_ 2001_13_23.
3 Collier J P, Selius A O, Tien J K. On developing a microstructurally and thermally stable iron-nickel base superalloy[J]. Superalloys, DOI:10.7449/1988/Superalloys_ 1988_43_52.
4 Manriquez J A, Bretz P L, Rabenberg L, et al. The high temperature stability of IN718 derivative alloys[J]. Superalloys, DOI:10.7449/1992/Superalloys_1992_507_516.
5 Kennedy R L, Cao W D, Bayha T D, et al. Developments in wrought Nb containing superalloys (718 + 100°F)[C]∥Procee-dings of the International Symposium on Niobium for High Tempe-rature Applications. Araxa, Brazil,2003:11.
6 Cao W D, Kennedy R L. Role of chemistry in 718 type alloys—Allvac-718Plus® development[C]∥ Presented at Superalloys 2004, Seven Springs Conference, Seven Springs, TMS. PA,2004:91.
7 Cao W D, Kennedy R L. New developments in wrought 718-type superalloys[J]. Acta Metall Sin (English Letters),2005,18(1):39.
8 Wang M Q, Deng Q, Du J H, et al. Domestic research progress of ATI 718Plus alloy[J]. Rare Met Mater Eng,2016,45(12):3335(in Chinese).
王民庆, 邓群, 杜金辉,等. ATI 718Plus合金国内研究进展[J]. 稀有金属材料与工程, 2016, 45(12):3335.
9 Cao W D,Kennedy R L.Production evaluation of 718-ER alloy[C]∥Ninth International Symposium on Superalloys 2000, TMS (The Minerals, Metals & Materials Society). PA,2000:101.
10 Kennedy R L. Allvac 718PlusTM, superalloy for the next forty years[C]∥Sixth International Symposium on Superalloys 718, 625, 706 and Derivatives, TMS. Pennsylvania,2005:1.
11 Wang M Q, Du J H, Deng Q, et al. The effect of aluminum on microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater Trans,2015,56(5):635.
12 Liu X, et al. Molecular dynamics simulation on phosphorus behavior at Ni grain boundary[J]. Scr Mater,1999,42(2):189.
13 Dong J X, Zhang M C, Xie X S, et al. Interfacial segregation and cosegregation behaviour in a nickel-base alloy 718[J]. Mater Sci Eng A,2002,328(1-2):8.
14 Zheng L, Xu T D, Deng Q, et al. Experimental study on the characteristic of grain-boundary segregation of phosphorus in Ni-base superalloy[J]. Mater Lett,2008,62(1):54.
15 Ping D H, et al. Grain boundary segregation in a Ni-Fe-based (Alloy 718) superalloy[J]. Mater Sci Eng A,2007,456(1-2):99.
16 Yamaguchi M, et al. Grain boundary decohesion by impurity segregation in a nickel-sulfur system[J]. Science,2005,307(5708):393.
17 Andrieu E, Cozar R, Pineau A. Effect of environment and microstructure on the high temperature behavior of alloy 718[J]. Superalloys 718, 625 and various derivatives, 1989: 241. DOI:10.7449/1989/superalloys_1989_241_256.
18 Andrieu E, Wang N, Molins R, Pineau A. Influence of compositio-nal modifications on thermal stability of alloy 718[C]∥Superalloys 718, 625, 706 and Various Derivatives, TMS (The Minerals, Metals & Mat-erials Society). Warrendale, PA,1994:695.
19 Chang K M, Nahm A H. Rene 220: 100 °F improvement over alloy 718[J]. Superalloy 718: Metallurgy and Applications, 1989: 631. DOI:10.7449/1989/superalloys_1989_631_646.
20 Xie X S, Wang G L, Dong J X, et al. Structure stability study on a newly developed nickel-base superalloy-allvac® 718PlusTM[C]∥Proceedings of the International Symposium on Superalloys 718, 625, 706 and Various Derivatives, TMS. Pittsburgh, Pennsylvania,2005:179.
21 Pickering E J, Mathur H, Bhowmik A, et al. Grain-boundary precipitation in Allvac 718Plus[J]. Acta Mater,2012,60(6):2757.
22 Wang M Q, Du J H, Deng Q, et al. The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy[J]. Mater Sci Eng A,2015,626:382.
23 Jeniski R A, Kennedy R L. Development of ATI Allvac® 718Plus® alloy and applications[C]∥Second Symposium on Recent Advantages of Nb-Containing Materials in Europe.2006:1.
24 Cao W D. Solidification and solid state phase transformation of Allvac® 718PlusTM alloy[J]. Superalloys 718, 625, 706 and Derivatives 2005 edited by Loria E A, TMS (The Minerals, Metals & Materials Society).2005:165.
25 Wang M Q, Du J H, Deng Q, et al. Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus[J]. J Alloys Compd,2017,701:635.
26 Liu X, Xu J, Deem N, et al. Effect of thermal-mechanical treatment on the fatigue crack propagation behavior of newly developed Allvac 718Plus alloy[J]. Delta,2005,10:100.
27 Liu X, Rangararan S, Barbero E, et al. Superalloys 2004[C]∥The Seven Springs Conference, Seven Springs, TMS (The Minerals, Metals & Materials Society). PA,2004:283.
28 Bond B J, Kennedy R L. Evaluation of Allvac® 718PlusTM alloy in the cold worked and heat treated condition[C]∥Sixth International Special Emphasis Symposium on Superalloys 718,625, 706 and Derivatives edited by Loria E A, TMS (The Minerals, Metals & Materials Society).2006: 203.
29 Lemsky J, Kloske K, Bayha T, et al. Press forging of alloy 718PlusTM (abstract only)[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives edited by Loria E A, TMS (The Minerals, Metals & Materials Society). Pittsburgh, PA,2005:709.
30 Bergstrom D S, Bayha T D. Properties and microstructure of Allvac® 718PlusTM alloy rolled sheet[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives, TMS (The Minerals, Metals & Materials Society). Pittsburgh, PA,2005:243.
31 Fawley R W, et al. Evaluating the resistance of Rene 41 to strain-age cracking (Rene 41 resistance to strain-age cracking during post-weld heat treatment)[J]. Welding Res Council Bull,1970,150:1.
32 Klarstrom D L, Ishwar V R, Rowe M D. Properties, weldability and applications of advanced wrought superalloys for gas turbine engines[J]. Acta Metall Sin,2005,18(1):1.
33 Vishwakarma K R, Richards N L, et al. Microstructural analysis of fusion and heat affected zones in electron beam welded Allvac® 718PlusTM superalloy[J]. Mater Sci Eng A,2008, 480(1):517.
34 Idowu O A, Ojo O A, et al. Crack-free electron beam welding of Allvac 718Plus® superalloy[J]. Weld J,2009,88(9):179.
35 Andersson J, Sjöberg G P. Repair welding of wrought superalloys: alloy 718, Allvac 718Plus and Waspaloy[J]. Sci Technol Weld J,2012,17(1):49.
36 Idowu O A. Heat affected zone cracking of Allvac 718Plus superalloy during high power beam welding and post-weld heat treatment[D]. Winnipeg: University of Manitoba,2010.
37 Idowu O A, Ojo O A, Chaturvedi M C. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy[J]. Mater Sci Eng A,2007,454:389.
38 Sun J, Liu X, Tong Y, et al. A comparative study on welding temperature fields, residual stress distributions and deformations induced by laser beam welding and CO2 gas arc welding[J]. Mater Des,2014,63:519.
39 Vishwakarma K R, Richards N L, et al. HAZ microfissuring in EB welded allvac 718PlusTM alloy[C]∥Sixth Internatinal Symposium on Superalloys 718, 625, 706 and Derivatives, TMS (The Minerals, Metals & Materials Society). Warrendale,2005:637.
40 Asala G, Ojo O A. On post-weld heat treatment cracking in TIG welded superalloy ATI 718Plus[J]. Results Phys,2016,6:196.
41 Unocic K A, Hayes R W, Mills M J, et al. Microstructural features leading to enhanced resistance to grain boundary creep cracking in Allvac 718Plus[J]. Metall Mater Trans A, 2010,41(2):409.
42 Bayha T D, Lu M, Kloshe K E. Investment casting of Allvac® 718PlusTM alloy[C]∥Sixth International Special Emphasis Sympo-sium on Superalloys 718, 625, 706 and Derivatives, edited by Loria E A, TMS. Pittsburgh, PA,2005:223.
43 Uzgur S C, Uzunonat Y, Diltemiz S F, et al. State-of-art technology Allvac 718Plus superalloy for gas turbine engine parts[J].Adv Mater Res,2011,213:131.
44 Dempster I, Cao W D, Kennedy R L, et al. Structure and property comparison of Allvac® 718PlusTM alloy and Waspaloy forgings[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives, edited by Loria E A, TMS. Pittsburgh, PA,2005:155.
45 Schreiber K, Loehnert K, Singer R F. Opportunities and challenges for the new nickel base alloy 718PlusTM [C]∥Proceedings of Second Symposium on Recent Advantages of Nb-Containing Materials in Europe: Aerospace Applications—A Technical and Commercial Perspective. Essen, Germany,2006.
46 Ott E A, Groh J, Sizek H. Metals affordability initiative: Application of Allvac® 718Plus® alloy for aircraft engine static structural components[C]∥Sixth International Special Emphasis Symposium on Superalloys 718, 625, 706 and Derivatives, TMS. Pittsburgh, PA,2005:35.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed