Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10008-10012    https://doi.org/10.11896/cldb.20010112
  无机非金属及其复合材料 |
透明导电CuCr1-xMgxO2(x=0~0.08)薄膜的固溶度扩展和c轴外延生长
沈艳, 刘丹丹, 宋世金, 唐艳艳, 胡一丁, 武浩荣, 虞澜
昆明理工大学材料科学与工程学院,昆明 650093
Solid Solubility Extension and c-axis Epitaxial Growth of Transparent Conductive CuCr1-xMgxO2(x=0—0.08) Thin Films
SHEN Yan, LIU Dandan, SONG Shijin, TAN Yanyan, HU Yiding, WU Haorong, YU Lan
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 2915KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用脉冲激光沉积(PLD)技术,在0~15°斜切的α-Al2O3 (0001)衬底上生长了c轴外延的CuCr1-xMgxO2(x=0~0.08)系列薄膜。随Mg掺杂量增加,薄膜均为单相铜铁矿结构,表现出符合Arrhenius热激活模式的半导体电输运行为,室温电阻率单调下降2~3个数量级,热激活能由0.22 eV下降至0.025 eV,由此推断薄膜中Mg的固溶度至少为0.08,与多晶(~0.03)相比显著扩展。这是由于PLD薄膜生长具有非平衡、瞬时爆炸特征,使靶材第二相(MgCr2O4)中的Mg重新以等离子态定向运输到衬底上,迁移固溶到薄膜晶格中,固溶度扩展。薄膜(x=0, 0.02)在380~780 nm可见光区的透过率为60%~80%,直接光学带隙Eg分别为3.06 eV、3.04 eV。更多Mg2+替代Cr3+时,会在价带顶上方引入受主能级并展宽,使热激活能显著下降,产生更多空穴载流子,透过率和光学带隙略有下降;Mg固溶到晶格中,促进薄膜层状晶粒长大,外延性提高,使电阻率进一步下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈艳
刘丹丹
宋世金
唐艳艳
胡一丁
武浩荣
虞澜
关键词:  CuCr1-xMgxO2薄膜  透明导电  脉冲激光沉积  固溶度扩展  c轴外延生长    
Abstract: The c-axis epitaxial CuCr1-xMgxO2(x=0—0.08) thin films were grown on the 0—15° vicinal cut α-Al2O3(0001) substrate by pulsed laser deposition (PLD) technology. With the increase of Mg doping, the thin films are all single-phase delafossite structure. The thin films exhibit semiconductor behavior, which conforms to Arrhenius thermal activation mode. The room temperature resistivity decreased monotonically by 2—3 orders of magnitude, the thermal activation energy dropped from 0.22 eV to 0.025 eV. It was inferred that the solid solubility of Mg in the thin film was at least 0.08, which was significantly extended compared with polycrystalline (~0.03). The non-equilibrium and instantaneous explosion characteristics of PLD make Mg in the target second phase (MgCr2O4) transport to the substrate by plasma, and dissolve into the thin film lattice, resulting in an extension of the solid solubility. The transmittance of the thin films (x=0, 0.02) was 60%—80% in the visible light region of 380—780 nm. The direct optical bandgap Eg was 3.06 eV, 3.04 eV, respectively. The acceptor energy level is introduced and broadened above the valence band top while more Cr3+ replaced by Mg2+, making thermal activation energy decrease significantly, the more carriers can be gene-rated. The transmittance and optical band gap have a slight drop. When Mg is solid-dissolved into the crystal lattice, which promotes the growth of layered crystal grains of the thin films, the epitaxialitye are improved, and the resistivity is further reduced.
Key words:  CuCr1-xMgxO2 films    transparent conductive    pulsed laser deposition    solid solubility extension    c-axis epitaxial growth
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51962017; 51462017)
通讯作者:  yulan000@hotmail.com   
作者简介:  沈艳,昆明理工大学材料学硕士研究生,主要研究方向为光电子材料与器件。
虞澜, 昆明理工大学材料学院教授, 博士研究生导师。2012年6月获得昆明理工大学与德国马普固体研究所联合培养的材料学专业博士学位。主要从事强关联体系和原子层热电堆特征氧化物、半导体热(光)电材料的多晶陶瓷和外延薄膜的制备表征、热电磁输运各向异性、横向热电效应, 以及原子层热电堆薄膜热流传感器研发。在国内外学术期刊上发表论文 50 余篇,申请发明专利 25 项, 其中授权 11 项。
引用本文:    
沈艳, 刘丹丹, 宋世金, 唐艳艳, 胡一丁, 武浩荣, 虞澜. 透明导电CuCr1-xMgxO2(x=0~0.08)薄膜的固溶度扩展和c轴外延生长[J]. 材料导报, 2021, 35(10): 10008-10012.
SHEN Yan, LIU Dandan, SONG Shijin, TAN Yanyan, HU Yiding, WU Haorong, YU Lan. Solid Solubility Extension and c-axis Epitaxial Growth of Transparent Conductive CuCr1-xMgxO2(x=0—0.08) Thin Films. Materials Reports, 2021, 35(10): 10008-10012.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010112  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10008
1 Marquardt M A, Ashmore N A, Cann D P, et al. The Solid Films, 2006, 496(1),146.
2 Hosono H. International Journal of Applied Ceramic Technology, 2004, 1(2),106.
3 Kawazoe H, Yasukawa M, Hyodo H, et al.Nature, 1997, 389(6654),939.
4 Ono Y, Satoh K I, Nozaki T, et al. Japanese Journal of Applied Physics, 2006, 46(3A),1071.
5 Maignan A, Martin C, Fresard R, et al.Solid State Communications, 2009, 149(23),962.
6 Yu R S, Hu D H.Ceramics International, 2015, 41(8),9383.
7 Fang Z J, Zhu J Z, Zhou J, et al. Chinese Physicals B, 2012, 21(8),421.
8 Hamada I, Katayama-Yoshida H. Physica B-Condensed Matter, 2006, 376,808.
9 Poienar M, Hardy V, Bohdan K, et al. Journal of Solid State Chemistry, 2012, 185(5),56.
10 Chuail Y H, Wang X, Shen H Z, et al. Journal of Materials Science, 2016, 51(7), 3592.
11 Hu B, Fu Y H, Fu Y,et al. Acta Photonica Sinica, 2014, 43(12), 27(in Chinese).
胡冰, 揣雅惠, 付洋, 等. 光子学报, 2014, 43(12), 27.
12 Okuda T, Jufuku N, Hidaka S, et al.Physical Review B, 2005, 72(14),4403.
13 Cui K, Yu L, Liu A A, et al. Materials Reports B: Research Papers, 2019, 33(10),3363 (in Chinese).
崔凯, 虞澜, 刘安安, 等. 材料导报:研究篇, 2019, 33(10),3363.
14 Tang Y, Qin M, Hu Y D, et al. Journal of Asian Ceramic Societies, DOI:10.1080/21870764. 2020.1761083.
15 Wang Y F, Gu Y, Wang T, et al.Journal of Alloys and Compounds, 2011, 509(19),5897.
16 Nagarajan R, Draeseke A D, Sleight A W, et al.Journal of Applied Phy-sics, 2001, 89(12),8022.
17 Tripurari S Tripathi, Karppinen M.Advanced Electronic Materials, 2016,3(6),1600341.
18 Sadik P W, Ivill M, Craciun V, et al.Thin Solid Films, 2009, 517(11),3211.
19 Li D, Fang X D, Deng Z H, et al.Journal of Alloys and Compounds, 2009, 486 (1),462.
20 Fun K, Yu L, Qin M,et al. Journal of Synthetic Crystals,2016, 45(4),1000 (in Chinese).
樊堃, 虞澜, 秦梦, 等. 人工晶体学报, 2016, 45(4),1000.
21 Zhang D M, Zhao X J, Li Z H. Pulsed laser deposition dynamics and thin film deposited onto glass, Hubei Science and Technology Press, China, 2006 (in Chinese).
张端明, 赵修建, 李智华. 脉冲激光沉积动力学与玻璃基薄膜, 湖北科学技术出版社, 2006.
22 Fukumura T, Jin Z, Ohtomo A, et al.Applied Physics Letters, 1999, 75(21), 3366.
23 Norton D P, Lowndes D H, Sales B C, et al.Physical Review B, 1994, 49(6), 4182.
[1] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[2] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[3] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[4] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[5] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[6] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[7] 许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881.
[8] 袁大超, 郭双, 郝建军, 马跃进, 王淑芳. 脉冲激光沉积c轴取向BiCuSeO外延薄膜及其热电性能[J]. 材料导报, 2019, 33(1): 152-155.
[9] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[10] 国洪建, 贾均红, 张振宇, 梁补女, 陈文元, 李博, 汪建义. 脉冲激光沉积VN/Ag复合薄膜的组织及摩擦学性能研究*[J]. 《材料导报》期刊社, 2017, 31(2): 55-59.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed