Review of Light-induced Phase Segregation in Mixed Halide Perovskites
YANG Xiao1,*, CAO Chenglong1, HU Shu2, GE Jiaqing1, JIANG Qingsong1, SHENG Chuanxiang2
1 Jiangsu Laboratory of Lake Environment Remote Sensing Technologies, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China 2 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract: Halide perovskite materials have attracted much attention due to their excellent photoelectronic properties and low manufacturing cost. Halide perovskite solar cells are expected to become the next generation of photovoltaic technology, because their best power conversion efficiency has increased to 25.2% in just a few years. In particular, the band gap of mixed halide perovskites can be tuned by altering the composition of halides, making them ideal materials for preparing the top absorption layer of tandem solar cells and the active layer of light-emitting diodes. Unfortunately, mixed halide perovskites exhibit reversible halide segregation under illumination. This instability significantly affects the photophysical properties of the materials and severely limits the application prospect of mixed halide perovskites. Therefore, a large amount of research has been performed in the past five years, aiming to reveal the basic mechanism of the photoinduced halide segregation; the methods to restrain this instability were also discussed from the aspects of stoichiometry and preparation process. Recently, it has been gradually realized that light-induced phase segregation represents an intrinsic instability by means of optical and structural measurements in mixed halide perovskites, and is affected by both thermodynamics and kinetics. Phase segregation can be mitigated by selecting suitable components and controlling illumination and temperature. In addition, the surface defects passivation and crystallinity control can also improve photostability of mixed halide perovskites. However, the understanding of the light-induced phase segregation is still incomplete, and the strategies to improve the photostability of mixed halide perovskites also have not been fully explored. Here, we review and analyze experimental observations of light-induced phase segregation in mixed halide perovskite, especially for the typical material MAPb(I1-xBrx)3. We also classify the mechanism of halide segregation combined with theoretical analysis, and finally summarize ongoing research to suppress the phenomenon. We hope this review will provide a reference for the development of photostable mixed-halide perovskite materials.
1 de Wolf S, Holovsky J, Moon S J, et al. The Journal of Physical Chemi-stry Letters, 2014, 5(6), 1035. 2 Braly I L, de Quilettes D W, Pazos-Outón L M, et al. Nature Photonics, 2018, 12(6), 355. 3 Lin K, Xing J, Quan L N, et al. Nature, 2018, 562(7726), 245. 4 Steirer K X, Schulz P, Teeter G, et al. ACS Energy Letters, 2016, 1(2), 360. 5 Xing G, Mathews N, Sun S, et al. Science, 2013, 342(6156), 344. 6 Stranks S D, Eperon G E, Grancini G, et al. Science,2013,342(6156),341. 7 Sun S, Salim T, Mathews N, et al. Energy & Environmental Science, 2013, 7(1), 399. 8 Burschka J, Pellet N, Moon S J, et al. Nature,2013,499(7458),316. 9 Shirayama M, Kadowaki H, Miyadera T, et al. Physical Review Applied, 2016, 5(1), 014012. 10 Liu M, Johnston M B, Snaith H J. Nature, 2013, 501(7467), 395. 11 Jeon N J, Noh J H, Yang W S, et al. Nature, 2015, 517(7535), 476. 12 Stranks S D, Snaith H J. Nature Nanotechnology, 2015, 10(5), 391. 13 Ono L K, Qi Y, Liu S F. Joule,2018, 2(10), 1961. 14 Tan Z K, Moghaddam R S, Lai M L, et al. Nature Nanotechnology, 2014, 9(9), 687. 15 Cho H, Jeong S H, Park M H, et al. Science, 2015, 350(6265), 1222. 16 Veldhuis S A, Boix P P, Yantara N, et al. Advanced Materials, 2016, 28(32), 6804. 17 Dou L, Yang Y M, You J, et al. Nature Communications, 2014, 5(1), 5404. 18 Hu X, Zhang X, Liang L, et al. Advanced Functional Materials, 2014, 24(46), 7373. 19 Sun H, Tian W, Cao F, et al. Advanced Materials, 2018, 30(21), 1706986. 20 Sahli F, Werner J, Kamino B A, et al. Nature Materials,2018,17(9),820. 21 Conings B, Drijkoningen J, Gauquelin N, et al. Advanced Energy Mate-rials, 2015, 5(15), 1500477. 22 Lin Y, Chen B, Fang Y, et al. Nature Communications, 2018, 9(1), 4981. 23 Park B, Seok S I. Advanced Materials, 2019, 31(20), 1805337. 24 Wang R, Mujahid M, Duan Y, et al. Advanced Functional Materials, 2019, 29(47), 1808843. 25 Ju M G, Chen M, Zhou Y, et al. Joule, 2018, 2(7), 1231. 26 Li F, Liu M. Journal of Materials Chemistry A, 2017, 5(30), 15447. 27 Zhou Y, Zhao Y. Energy & Environmental Science,2019,12(5),1495. 28 Berhe T A, Su W N, Chen C H, et al. Energy & Environmental Science, 2016, 9(2), 323. 29 Liu Z, Qiu L, Ono L K, et al. Nature Energy,2020, 5(8), 596. 30 Ma S, Bai Y, Wang H, et al. Advanced Energy Materials, 2020, 10(9), 1902472. 31 Chen W, Wu Y, Yue Y, et al. Science,2015, 350(6263), 944. 32 Shi L, Young T L, Kim J, et al. ACS Applied Materials & Interfaces,2017, 9(30), 25073. 33 Hoke E T, Slotcavage D J, Dohner E R, et al. Chemical Science, 2014, 6(1), 613. 34 Slotcavage D J, Karunadasa H I, McGehee M D. ACS Energy Letters, 2016, 1(6), 1199. 35 Yang X, Yan X, Wang W, et al. Organic Electronics, 2016, 34, 79. 36 Knight A J, Herz L M. Energy & Environmental Science, 2020, 13(7), 2024. 37 Brennan M C, Draguta S, Kamat P V, et al. ACS Energy Letters, 2018, 3(1), 204. 38 Brennan M C, Ruth A, Kamat P V, et al. Trends in Chemistry, 2020, 2(4), 282. 39 Chen Q, de Marco N, Yang Y M, et al. Nano Today,2015,10(3),355. 40 Noh J H, Im S H, Heo J H, et al. Nano Letters,2013, 13(4), 1764. 41 Eperon G E, Stranks S D, Menelaou C, et al. Energy & Environmental Science, 2014, 7(3), 982. 42 Beal R E, Slotcavage D J, Leijtens T, et al. The Journal of Physical Chemistry Letters, 2016, 7(5), 746. 43 McMeekin D P, Sadoughi G, Rehman W, et al. Science, 2016, 351(6269), 151. 44 Kulkarni S A, Baikie T, Boix P P, et al. Journal of Materials Chemistry A, 2014, 2(24), 9221. 45 Suarez B, Gonzalez-Pedro V, Ripolles T S, et al. The Journal of Physical Chemistry Letters, 2014, 5(10), 1628. 46 Hu M, Bi C, Yuan Y, et al. Advanced Science, 2016, 3(6), 1500301. 47 Kumawat N K, Dey A, Narasimhan K L, et al. ACS Photonics, 2015, 2(3), 349. 48 Yoon S J, Draguta S, Manser J S, et al. ACS Energy Letters, 2016, 1(1), 290. 49 Duong T, Mulmudi H K, Wu Y, et al. ACS Applied Materials & Interfaces, 2017, 9(32), 26859. 50 Barker A J, Sadhanala A, Deschler F, et al. ACS Energy Letters, 2017, 2(6), 1416. 51 Draguta S, Sharia O, Yoon S J, et al. Nature Communications, 2017, 8(1), 200. 52 Gottesman R, Gouda L, Kalanoor B S, et al. The Journal of Physical Chemistry Letters, 2015, 6(12), 2332. 53 Drisdell W S, Leppert L, Sutter-Fella C M, et al. ACS Energy Letters, 2017, 2(5), 1183. 54 Yoon S J, Kuno M, Kamat P V. ACS Energy Letters,2017,2(7),1507. 55 Ruth A, Brennan M C, Draguta S, et al. ACS Energy Letters, 2018, 3(10), 2321. 56 Knight A J, Wright A D, Patel J B, et al. ACS Energy Letters, 2019, 4(1), 75. 57 Elmelund T, Seger B, Kuno M, et al. ACS Energy Letters,2020,5(1),56. 58 Braly I L, Stoddard R J, Rajagopal A, et al. ACS Energy Letters, 2017, 2(8), 1841. 59 Bischak C G, Hetherington C L, Wu H, et al. Nano Letters, 2017, 17(2), 1028. 60 Vicente J R, Chen J. The Journal of Physical Chemistry Letters, 2020, 11(5), 1802. 61 Yuan Y, Huang J. Accounts of Chemical Research, 2016, 49(2), 286. 62 Azpiroz J M, Mosconi E, Bisquert J, et al. Energy & Environmental Science, 2015, 8(7), 2118. 63 Meloni S, Moehl T, Tress W, et al. Nature Communications, 2016, 7(1), 10334. 64 Tiede D O, Calvo M E, Galisteo-López J F, et al. The Journal of Physical Chemistry Letters, 2020, 11(12), 4911. 65 Balakrishna R G, Kobosko S M, Kamat P V. ACS Energy Letters, 2018, 3(9), 2267. 66 Abdi-Jalebi M, Zahra Andaji-Garmaroudi, Cacovich S, et al. Nature, 2018, 555(7697), 497. 67 Brivio F, Caetano C, Walsh A. The Journal of Physical Chemistry Letters, 2016, 7(6), 1083. 68 Gualdrón-Reyes A F, Yoon S J, Barea E M, et al. ACS Energy Letters,2019, 4(1), 54. 69 Galkowski K, Mitioglu A, Miyata A, et al. Energy & Environmental Science, 2016, 9(3), 962. 70 Johnston M B, Herz L M. Accounts of Chemical Research, 2016, 49(1), 146. 71 Wang X, Ling Y, Lian X, et al. Nature Communications, 2019, 10(1), 695. 72 Belisle R A, Bush K A, Bertoluzzi L, et al. ACS Energy Letters, 2018, 3(11), 2694. 73 Knight A J, Patel J B, Snaith H J, et al. Advanced Energy Materials,2020, 10(9), 1903488. 74 McMeekin D P, Sadoughi G, Rehman W, et al. Science, 2016, 351(6269), 151. 75 Rehman W, McMeekin D P, Patel J B, et al. Energy & Environmental Science, 2017, 10(1), 361. 76 Guo D, Andaji-Garmaroudi Z, Abdi-Jalebi M, et al. ACS Energy Letters, 2019, 4(10), 2360. 77 Andaji-Garmaroudi Z, Abdi-Jalebi M, Guo D, et al. Advanced Materials, 2019, 31(42), 1902374. 78 Zhou Y, Jia Y H, Fang H H, et al. Advanced Functional Materials, 2018, 28(35), 1803130. 79 Sutter-Fella C M, Ngo Q P, Cefarin N, et al. Nano Letters,2018, 18(6), 3473. 80 Mathew P S, Samu G F, Janáky C, et al. ACS Energy Letters, 2020, 5(6), 1872. 81 Knight A J, Borchert J, Oliver R D J, et al. ACS Energy Letters, 2021, 6(2), 799. 82 Xie Y M, Zeng Z, Xu X, et al. Small,2020, 16(10), 1907226. 83 Li N, Zhu Z, Li J, et al. Advanced Energy Materials, 2018, 8(22), 1800525. 84 Bush K A, Frohna K, Prasanna R, et al. ACS Energy Letters, 2018, 3(2), 428. 85 Yang Z, Rajagopal A, Jo S B, et al. Nano Letters,2016,16(12),7739. 86 Rehman W, Milot R L, Eperon G E, et al. Advanced Materials,2015, 27(48), 7938. 87 Williams S T, Zuo F, Chueh C C, et al. ACS Nano,2014,8(10),10640. 88 Tidhar Y, Edri E, Weissman H, et al. Journal of the American Chemical Society, 2014, 136(38), 13249. 89 Chen Q, Zhou H, Fang Y, et al. Nature Communications,2015,6(1),7269. 90 Yu H, Wang F, Xie F, et al. Advanced Functional Materials, 2014, 24(45), 7102. 91 Xu J, Boyd C C, Yu Z J, et al. Science, 2020, 367(6482), 1097. 92 Cho J, Kamat P V. Chemistry of Materials, 2020, 32(14), 6206. 93 Kieslich G, Sun S, Cheetham A K. Chemical Science, 2014, 5(12), 4712. 94 Yang J N, Song Y, Yao J S, et al. Journal of the American Chemical Society, 2020, 142(6), 2956. 95 Saliba M, Matsui T, Domanski K, et al. Science,2016,354(6309),20. 96 Kubicki D J, Prochowicz D, Hofstetter A, et al. Journal of the American Chemical Society, 2017, 139(40), 14173. 97 Correa-Baena J P, Luo Y, Brenner T M, et al. Science, 2019, 363(6427), 627. 98 Shao Y, Xiao Z, Bi C, et al. Nature Communications,2014, 5(1), 5784. 99 Xu J, Buin A, Ip A H, et al. Nature Communications,2015,6(1),7081. 100 Noel N K, Abate A, Stranks S D, et al. ACS Nano,2014,8(10),9815. 101 Lee J W, Kim H S, Park N G. Accounts of Chemical Research,2016, 49(2), 311. 102 Zhou Y, Wang F, Cao Y, et al. Advanced Energy Materials, 2017, 7(22), 1701048. 103 Wang J, Zhang J, Zhou Y, et al. Nature Communications, 2020, 11(1), 177. 104 Tang X, van den Berg M, Gu E, et al. Nano Letters,2018, 18(3), 2172. 105 Li W, Rothmann M U, Liu A, et al. Advanced Energy Materials, 2017, 7(20), 1700946. 106 Byun H R, Park D Y, Oh H M, et al. ACS Photonics,2017, 4(11), 2813. 107 Mao W, Hall C R, Chesman A S R, et al. Angewandte Chemie International Edition, 2019, 58(9), 2893. 108 Chen W, Mao W, Bach U, et al. Small Methods, 2019, 3(11), 1900273. 109 Brenes R, Eames C, Bulovic' V, et al. Advanced Materials, 2018, 30(15), 1706208. 110 Fan W, Shi Y, Shi T, et al. ACS Energy Letters, 2019, 4(9), 2052. 111 Ruf F, Rietz P, Aygüler M F, et al. ACS Energy Letters, 2018, 3(12), 2995. 112 Howard J M, Tennyson E M, Barik S, et al. The Journal of Physical Chemistry Letters, 2018, 9(12), 3463. 113 Nandi P, Giri C, Swain D, et al. ACS Applied Energy Materials, 2018, 1(8), 3807. 114 Jaffe A, Lin Y, Beavers C M, et al. ACS Central Science, 2016, 2(4), 201. 115 Anizelli H S, Fernandes R V, Scarmínio J, et al. Journal of Luminescence, 2018, 199, 348. 116 Mao W, Hall C R, Bernardi S, et al. Nature Materials,2021, 20(1), 55.