Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 20100115-15    https://doi.org/10.11896/cldb.20100115
  无机非金属及其复合材料 |
混合卤化物钙钛矿中的光致相分离效应
杨潇1,*, 曹成龙1, 胡书2, 葛嘉庆1, 蒋青松1, 盛传祥2
1 淮阴工学院江苏省湖泊环境遥感技术工程实验室,江苏 淮安 223003
2 南京理工大学电子工程与光电技术学院,南京 210094
Review of Light-induced Phase Segregation in Mixed Halide Perovskites
YANG Xiao1,*, CAO Chenglong1, HU Shu2, GE Jiaqing1, JIANG Qingsong1, SHENG Chuanxiang2
1 Jiangsu Laboratory of Lake Environment Remote Sensing Technologies, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China
2 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 23798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 卤化物钙钛矿材料由于具有良好的光电特性和低廉的制造成本引起了人们的普遍关注。卤化物钙钛矿太阳能电池被认为有望成为下一代主流的光伏技术,其最高光电转化效率在短短的数年间提升至25.2%。特别地,混合卤化物钙钛矿的带隙能够通过改变卤素比例进行调整,因此其是制备串联太阳能电池顶部吸收层和发光二极管活性层的理想材料。
   然而,混合卤化物钙钛矿在光照下呈现出可逆的卤素分离现象。这种不稳定效应显著影响材料的光物理特性,严重限制了混合卤化物钙钛矿的应用。因此,近五年来学者们对其进行了大量的研究,旨在揭示光致卤素分离的基本机制,以及从化学计量和制备工艺等方面多角度探讨抑制这种不稳定效应的方法。
   目前,通过光谱表征与物相分析等技术,研究者们逐渐认识到混合卤化物钙钛矿中的光致相分离效应是一种内在的不稳定性,并受到热力学和动力学的共同影响。研究表明,选择合适的组分以及调控光照、温度等条件可以减轻卤素分离的程度;此外,钝化表面缺陷或控制结晶度也能够在一定程度上提高薄膜的光稳定性。然而,人们对光致相分离效应的认识仍不全面,提高混合卤化物钙钛矿光稳定性的策略也没有得到充分的研究。
   本文以当前典型的混合卤化物钙钛矿材料MAPb(I1-xBrx)3为主要研究对象,回顾并分析目前对光致相分离效应的相关实验认识,结合理论分析对其发生机理进行分类阐述,最后对抑制光致相分离效应的研究进展进行了总结,以期为开发出具有光稳定性的混合卤化物钙钛矿材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨潇
曹成龙
胡书
葛嘉庆
蒋青松
盛传祥
关键词:  混合卤化物钙钛矿  光致相分离  光稳定  卤素离子迁移    
Abstract: Halide perovskite materials have attracted much attention due to their excellent photoelectronic properties and low manufacturing cost. Halide perovskite solar cells are expected to become the next generation of photovoltaic technology, because their best power conversion efficiency has increased to 25.2% in just a few years. In particular, the band gap of mixed halide perovskites can be tuned by altering the composition of halides, making them ideal materials for preparing the top absorption layer of tandem solar cells and the active layer of light-emitting diodes.
Unfortunately, mixed halide perovskites exhibit reversible halide segregation under illumination. This instability significantly affects the photophysical properties of the materials and severely limits the application prospect of mixed halide perovskites. Therefore, a large amount of research has been performed in the past five years, aiming to reveal the basic mechanism of the photoinduced halide segregation; the methods to restrain this instability were also discussed from the aspects of stoichiometry and preparation process.
Recently, it has been gradually realized that light-induced phase segregation represents an intrinsic instability by means of optical and structural measurements in mixed halide perovskites, and is affected by both thermodynamics and kinetics. Phase segregation can be mitigated by selecting suitable components and controlling illumination and temperature. In addition, the surface defects passivation and crystallinity control can also improve photostability of mixed halide perovskites. However, the understanding of the light-induced phase segregation is still incomplete, and the strategies to improve the photostability of mixed halide perovskites also have not been fully explored.
Here, we review and analyze experimental observations of light-induced phase segregation in mixed halide perovskite, especially for the typical material MAPb(I1-xBrx)3. We also classify the mechanism of halide segregation combined with theoretical analysis, and finally summarize ongoing research to suppress the phenomenon. We hope this review will provide a reference for the development of photostable mixed-halide perovskite materials.
Key words:  mixed halide perovskites    light-induced phase segregation    photostability    halide ion migration
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  O469  
基金资助: 国家自然科学基金(61704063;61804062;62074079);江苏省高等学校自然科学研究重大项目(20KJA510006);江苏省研究生科研与实践创新计划项目(HGYK202020)
通讯作者:  *yangxiao@hyit.edu.cn   
作者简介:  杨潇,淮阴工学院电子信息工程学院副教授、硕士研究生导师。2010年本科毕业于河海大学计算机与信息学院,2016年在南京理工大学电子工程与光电技术学院光学工程专业取得工学博士学位。主要从事半导体光电材料与器件的研究工作。近年来,主持国家自然科学基金、产学研合作项目多项,在半导体光电材料与器件领域发表SCI论文20余篇。
引用本文:    
杨潇, 曹成龙, 胡书, 葛嘉庆, 蒋青松, 盛传祥. 混合卤化物钙钛矿中的光致相分离效应[J]. 材料导报, 2022, 36(16): 20100115-15.
YANG Xiao, CAO Chenglong, HU Shu, GE Jiaqing, JIANG Qingsong, SHENG Chuanxiang. Review of Light-induced Phase Segregation in Mixed Halide Perovskites. Materials Reports, 2022, 36(16): 20100115-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100115  或          http://www.mater-rep.com/CN/Y2022/V36/I16/20100115
1 de Wolf S, Holovsky J, Moon S J, et al. The Journal of Physical Chemi-stry Letters, 2014, 5(6), 1035.
2 Braly I L, de Quilettes D W, Pazos-Outón L M, et al. Nature Photonics, 2018, 12(6), 355.
3 Lin K, Xing J, Quan L N, et al. Nature, 2018, 562(7726), 245.
4 Steirer K X, Schulz P, Teeter G, et al. ACS Energy Letters, 2016, 1(2), 360.
5 Xing G, Mathews N, Sun S, et al. Science, 2013, 342(6156), 344.
6 Stranks S D, Eperon G E, Grancini G, et al. Science,2013,342(6156),341.
7 Sun S, Salim T, Mathews N, et al. Energy & Environmental Science, 2013, 7(1), 399.
8 Burschka J, Pellet N, Moon S J, et al. Nature,2013,499(7458),316.
9 Shirayama M, Kadowaki H, Miyadera T, et al. Physical Review Applied, 2016, 5(1), 014012.
10 Liu M, Johnston M B, Snaith H J. Nature, 2013, 501(7467), 395.
11 Jeon N J, Noh J H, Yang W S, et al. Nature, 2015, 517(7535), 476.
12 Stranks S D, Snaith H J. Nature Nanotechnology, 2015, 10(5), 391.
13 Ono L K, Qi Y, Liu S F. Joule,2018, 2(10), 1961.
14 Tan Z K, Moghaddam R S, Lai M L, et al. Nature Nanotechnology, 2014, 9(9), 687.
15 Cho H, Jeong S H, Park M H, et al. Science, 2015, 350(6265), 1222.
16 Veldhuis S A, Boix P P, Yantara N, et al. Advanced Materials, 2016, 28(32), 6804.
17 Dou L, Yang Y M, You J, et al. Nature Communications, 2014, 5(1), 5404.
18 Hu X, Zhang X, Liang L, et al. Advanced Functional Materials, 2014, 24(46), 7373.
19 Sun H, Tian W, Cao F, et al. Advanced Materials, 2018, 30(21), 1706986.
20 Sahli F, Werner J, Kamino B A, et al. Nature Materials,2018,17(9),820.
21 Conings B, Drijkoningen J, Gauquelin N, et al. Advanced Energy Mate-rials, 2015, 5(15), 1500477.
22 Lin Y, Chen B, Fang Y, et al. Nature Communications, 2018, 9(1), 4981.
23 Park B, Seok S I. Advanced Materials, 2019, 31(20), 1805337.
24 Wang R, Mujahid M, Duan Y, et al. Advanced Functional Materials, 2019, 29(47), 1808843.
25 Ju M G, Chen M, Zhou Y, et al. Joule, 2018, 2(7), 1231.
26 Li F, Liu M. Journal of Materials Chemistry A, 2017, 5(30), 15447.
27 Zhou Y, Zhao Y. Energy & Environmental Science,2019,12(5),1495.
28 Berhe T A, Su W N, Chen C H, et al. Energy & Environmental Science, 2016, 9(2), 323.
29 Liu Z, Qiu L, Ono L K, et al. Nature Energy,2020, 5(8), 596.
30 Ma S, Bai Y, Wang H, et al. Advanced Energy Materials, 2020, 10(9), 1902472.
31 Chen W, Wu Y, Yue Y, et al. Science,2015, 350(6263), 944.
32 Shi L, Young T L, Kim J, et al. ACS Applied Materials & Interfaces,2017, 9(30), 25073.
33 Hoke E T, Slotcavage D J, Dohner E R, et al. Chemical Science, 2014, 6(1), 613.
34 Slotcavage D J, Karunadasa H I, McGehee M D. ACS Energy Letters, 2016, 1(6), 1199.
35 Yang X, Yan X, Wang W, et al. Organic Electronics, 2016, 34, 79.
36 Knight A J, Herz L M. Energy & Environmental Science, 2020, 13(7), 2024.
37 Brennan M C, Draguta S, Kamat P V, et al. ACS Energy Letters, 2018, 3(1), 204.
38 Brennan M C, Ruth A, Kamat P V, et al. Trends in Chemistry, 2020, 2(4), 282.
39 Chen Q, de Marco N, Yang Y M, et al. Nano Today,2015,10(3),355.
40 Noh J H, Im S H, Heo J H, et al. Nano Letters,2013, 13(4), 1764.
41 Eperon G E, Stranks S D, Menelaou C, et al. Energy & Environmental Science, 2014, 7(3), 982.
42 Beal R E, Slotcavage D J, Leijtens T, et al. The Journal of Physical Chemistry Letters, 2016, 7(5), 746.
43 McMeekin D P, Sadoughi G, Rehman W, et al. Science, 2016, 351(6269), 151.
44 Kulkarni S A, Baikie T, Boix P P, et al. Journal of Materials Chemistry A, 2014, 2(24), 9221.
45 Suarez B, Gonzalez-Pedro V, Ripolles T S, et al. The Journal of Physical Chemistry Letters, 2014, 5(10), 1628.
46 Hu M, Bi C, Yuan Y, et al. Advanced Science, 2016, 3(6), 1500301.
47 Kumawat N K, Dey A, Narasimhan K L, et al. ACS Photonics, 2015, 2(3), 349.
48 Yoon S J, Draguta S, Manser J S, et al. ACS Energy Letters, 2016, 1(1), 290.
49 Duong T, Mulmudi H K, Wu Y, et al. ACS Applied Materials & Interfaces, 2017, 9(32), 26859.
50 Barker A J, Sadhanala A, Deschler F, et al. ACS Energy Letters, 2017, 2(6), 1416.
51 Draguta S, Sharia O, Yoon S J, et al. Nature Communications, 2017, 8(1), 200.
52 Gottesman R, Gouda L, Kalanoor B S, et al. The Journal of Physical Chemistry Letters, 2015, 6(12), 2332.
53 Drisdell W S, Leppert L, Sutter-Fella C M, et al. ACS Energy Letters, 2017, 2(5), 1183.
54 Yoon S J, Kuno M, Kamat P V. ACS Energy Letters,2017,2(7),1507.
55 Ruth A, Brennan M C, Draguta S, et al. ACS Energy Letters, 2018, 3(10), 2321.
56 Knight A J, Wright A D, Patel J B, et al. ACS Energy Letters, 2019, 4(1), 75.
57 Elmelund T, Seger B, Kuno M, et al. ACS Energy Letters,2020,5(1),56.
58 Braly I L, Stoddard R J, Rajagopal A, et al. ACS Energy Letters, 2017, 2(8), 1841.
59 Bischak C G, Hetherington C L, Wu H, et al. Nano Letters, 2017, 17(2), 1028.
60 Vicente J R, Chen J. The Journal of Physical Chemistry Letters, 2020, 11(5), 1802.
61 Yuan Y, Huang J. Accounts of Chemical Research, 2016, 49(2), 286.
62 Azpiroz J M, Mosconi E, Bisquert J, et al. Energy & Environmental Science, 2015, 8(7), 2118.
63 Meloni S, Moehl T, Tress W, et al. Nature Communications, 2016, 7(1), 10334.
64 Tiede D O, Calvo M E, Galisteo-López J F, et al. The Journal of Physical Chemistry Letters, 2020, 11(12), 4911.
65 Balakrishna R G, Kobosko S M, Kamat P V. ACS Energy Letters, 2018, 3(9), 2267.
66 Abdi-Jalebi M, Zahra Andaji-Garmaroudi, Cacovich S, et al. Nature, 2018, 555(7697), 497.
67 Brivio F, Caetano C, Walsh A. The Journal of Physical Chemistry Letters, 2016, 7(6), 1083.
68 Gualdrón-Reyes A F, Yoon S J, Barea E M, et al. ACS Energy Letters,2019, 4(1), 54.
69 Galkowski K, Mitioglu A, Miyata A, et al. Energy & Environmental Science, 2016, 9(3), 962.
70 Johnston M B, Herz L M. Accounts of Chemical Research, 2016, 49(1), 146.
71 Wang X, Ling Y, Lian X, et al. Nature Communications, 2019, 10(1), 695.
72 Belisle R A, Bush K A, Bertoluzzi L, et al. ACS Energy Letters, 2018, 3(11), 2694.
73 Knight A J, Patel J B, Snaith H J, et al. Advanced Energy Materials,2020, 10(9), 1903488.
74 McMeekin D P, Sadoughi G, Rehman W, et al. Science, 2016, 351(6269), 151.
75 Rehman W, McMeekin D P, Patel J B, et al. Energy & Environmental Science, 2017, 10(1), 361.
76 Guo D, Andaji-Garmaroudi Z, Abdi-Jalebi M, et al. ACS Energy Letters, 2019, 4(10), 2360.
77 Andaji-Garmaroudi Z, Abdi-Jalebi M, Guo D, et al. Advanced Materials, 2019, 31(42), 1902374.
78 Zhou Y, Jia Y H, Fang H H, et al. Advanced Functional Materials, 2018, 28(35), 1803130.
79 Sutter-Fella C M, Ngo Q P, Cefarin N, et al. Nano Letters,2018, 18(6), 3473.
80 Mathew P S, Samu G F, Janáky C, et al. ACS Energy Letters, 2020, 5(6), 1872.
81 Knight A J, Borchert J, Oliver R D J, et al. ACS Energy Letters, 2021, 6(2), 799.
82 Xie Y M, Zeng Z, Xu X, et al. Small,2020, 16(10), 1907226.
83 Li N, Zhu Z, Li J, et al. Advanced Energy Materials, 2018, 8(22), 1800525.
84 Bush K A, Frohna K, Prasanna R, et al. ACS Energy Letters, 2018, 3(2), 428.
85 Yang Z, Rajagopal A, Jo S B, et al. Nano Letters,2016,16(12),7739.
86 Rehman W, Milot R L, Eperon G E, et al. Advanced Materials,2015, 27(48), 7938.
87 Williams S T, Zuo F, Chueh C C, et al. ACS Nano,2014,8(10),10640.
88 Tidhar Y, Edri E, Weissman H, et al. Journal of the American Chemical Society, 2014, 136(38), 13249.
89 Chen Q, Zhou H, Fang Y, et al. Nature Communications,2015,6(1),7269.
90 Yu H, Wang F, Xie F, et al. Advanced Functional Materials, 2014, 24(45), 7102.
91 Xu J, Boyd C C, Yu Z J, et al. Science, 2020, 367(6482), 1097.
92 Cho J, Kamat P V. Chemistry of Materials, 2020, 32(14), 6206.
93 Kieslich G, Sun S, Cheetham A K. Chemical Science, 2014, 5(12), 4712.
94 Yang J N, Song Y, Yao J S, et al. Journal of the American Chemical Society, 2020, 142(6), 2956.
95 Saliba M, Matsui T, Domanski K, et al. Science,2016,354(6309),20.
96 Kubicki D J, Prochowicz D, Hofstetter A, et al. Journal of the American Chemical Society, 2017, 139(40), 14173.
97 Correa-Baena J P, Luo Y, Brenner T M, et al. Science, 2019, 363(6427), 627.
98 Shao Y, Xiao Z, Bi C, et al. Nature Communications,2014, 5(1), 5784.
99 Xu J, Buin A, Ip A H, et al. Nature Communications,2015,6(1),7081.
100 Noel N K, Abate A, Stranks S D, et al. ACS Nano,2014,8(10),9815.
101 Lee J W, Kim H S, Park N G. Accounts of Chemical Research,2016, 49(2), 311.
102 Zhou Y, Wang F, Cao Y, et al. Advanced Energy Materials, 2017, 7(22), 1701048.
103 Wang J, Zhang J, Zhou Y, et al. Nature Communications, 2020, 11(1), 177.
104 Tang X, van den Berg M, Gu E, et al. Nano Letters,2018, 18(3), 2172.
105 Li W, Rothmann M U, Liu A, et al. Advanced Energy Materials, 2017, 7(20), 1700946.
106 Byun H R, Park D Y, Oh H M, et al. ACS Photonics,2017, 4(11), 2813.
107 Mao W, Hall C R, Chesman A S R, et al. Angewandte Chemie International Edition, 2019, 58(9), 2893.
108 Chen W, Mao W, Bach U, et al. Small Methods, 2019, 3(11), 1900273.
109 Brenes R, Eames C, Bulovic' V, et al. Advanced Materials, 2018, 30(15), 1706208.
110 Fan W, Shi Y, Shi T, et al. ACS Energy Letters, 2019, 4(9), 2052.
111 Ruf F, Rietz P, Aygüler M F, et al. ACS Energy Letters, 2018, 3(12), 2995.
112 Howard J M, Tennyson E M, Barik S, et al. The Journal of Physical Chemistry Letters, 2018, 9(12), 3463.
113 Nandi P, Giri C, Swain D, et al. ACS Applied Energy Materials, 2018, 1(8), 3807.
114 Jaffe A, Lin Y, Beavers C M, et al. ACS Central Science, 2016, 2(4), 201.
115 Anizelli H S, Fernandes R V, Scarmínio J, et al. Journal of Luminescence, 2018, 199, 348.
116 Mao W, Hall C R, Bernardi S, et al. Nature Materials,2021, 20(1), 55.
[1] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed