Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22080126-9    https://doi.org/10.11896/cldb.22080126
  无机非金属及其复合材料 |
多重谐振水泥基声子晶体带隙特性研究
陈俊豪, 曾晓辉*, 谢友均, 龙广成, 唐卓
中南大学土木工程学院,长沙 410000
Research on Band Gaps Characteristics of Multiple Resonant Cement-based Phononic Crystals
CHEN Junhao, ZENG Xiaohui*, XIE Youjun, LONG Guangcheng, TANG Zhuo
School of Civil Engineering, Central South University, Changsha 410000, China
下载:  全 文 ( PDF ) ( 19032KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了拓宽混凝土超材料弹性波衰减带的范围,本工作基于局域共振理论提出了一种多重谐振水泥基声子晶体。利用有限元方法,计算了多重谐振水泥基声子晶体的能带结构、本征模态和衰减特性,研究了带隙产生机理和影响因素,根据质量-弹簧系统推导了带隙估计式,分析了混凝土超材料充填层结构的减振性能。结果表明:多重谐振水泥基声子晶体在1~400 Hz频段内具有两个带隙,其中带隙的起始和截止频率由散射体Ⅰ、散射体Ⅱ和水泥砂浆基体的振动模式决定;包裹层的弹性模量、泊松比以及厚度是影响带隙的主要因素;由多重谐振水泥基声子晶体组成的混凝土超材料充填层结构在1~400 Hz频段内的加速度级均小于普通自密实混凝土充填层结构,特别是在带隙频段范围内振动降低了6~9 dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈俊豪
曾晓辉
谢友均
龙广成
唐卓
关键词:  混凝土超材料  局域共振  多重谐振  声子晶体  带隙  减振性能    
Abstract: In order to broaden the elastic wave attenuation band of metaconcrete, a multiple resonant cement-based phononic crystal was proposed based on the local resonance theory. Using the finite element method, the energy band structure, eigenmodes and attenuation characteristics of the multiple resonant cement-based phononic crystal were calculated, the generation mechanism and the influence law of its band gap was studied, the band gap estimation formula was derived from the mass-spring system, and the vibration reduction performance of the metaconcrete filling layer structure was analyzed. The results showed that the multiple resonant cement-based phononic crystal had two band gaps in the 400 Hz, where the starting and cut-off frequencies of the band gaps were determined by the vibration modes of resonator I, resonator II, and cement mortar matrix. The elastic modulus, Poisson's ratio and thickness of the soft coating were the main factors affecting the band gap. The acceleration level of the metaconcrete filling layer structure composed of multiple resonant cement-based phononic crystals in the frequency band of 1—400 Hz was smaller than that of the ordinary self-compacting concrete filling layer structure, especially in the band gap frequency band, the vibration was reduced by 6—9 dB.
Key words:  metaconcrete    local resonance    multiple resonant    phononic crystal    band gap    vibration reduction performance
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TU528.41  
基金资助: 国家自然科学基金(52078490;11790283)
通讯作者:  *曾晓辉,中南大学土木工程学院教授、博士研究生导师。2004年华东冶金学院无机非金属材料科学与工程专业本科毕业,2007年中国建筑材料科学研究总院材料科学与工程专业硕士毕业,2010年中南大学土木工程材料专业博士毕业,2018年到中南大学工作至今。目前主要从事混凝土超材料、高性能混凝土材料等方面的研究工作。发表论文100余篇,包括Resources、Conservation and Recycling、Journal of Cleaner Production、Cement and Concrete Composites、《硅酸盐学报》等。zxhzlh@126.com   
作者简介:  陈俊豪, 2016年6月、2019年6月分别于青岛理工大学和西南交通大学获得工学学士学位和硕士学位。现为中南大学土木工程学院博士研究生, 在曾晓辉教授的指导下进行研究。目前主要研究领域为混凝土超材料、城市轨道交通减振降噪。
引用本文:    
陈俊豪, 曾晓辉, 谢友均, 龙广成, 唐卓. 多重谐振水泥基声子晶体带隙特性研究[J]. 材料导报, 2024, 38(12): 22080126-9.
CHEN Junhao, ZENG Xiaohui, XIE Youjun, LONG Guangcheng, TANG Zhuo. Research on Band Gaps Characteristics of Multiple Resonant Cement-based Phononic Crystals. Materials Reports, 2024, 38(12): 22080126-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080126  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22080126
1 Leiben Z, Wang X, Wang Z, et al. Construction and Building Materials, 2018, 173, 201.
2 Briccola D, Pandolfi A. Frontiers in Materials, 2021, 7, 615189.
3 Liu Y, An X Y, Chen H L, et al. Composites Part A:Applied Science and Manufacturing, 2021, 143, 106294.
4 Mitchell S J, Pandolfi A, Ortiz M. Mechanics of Materials, 2015, 91(1), 295.
5 Mitchell S J, Pandolfi A, Ortiz M. Journal of the Mechanics and Physics of Solids, 2014, 65(4), 69.
6 Pandolfi A, Ortiz M, et al. Journal of Engineering Mechanics, 2016, 142(4), 04016010.
7 Xu C, Chen W, Hao H. Journal of the Mechanics and Physics of Solids, 139(6), 103929.
8 Jin H, Hao H, Hao Y, et al. Construction and Building Materials, 2020, 252(8), 118920.
9 Kettenbeil C, Ravichandran G. International Journal of Impact Enginee-ring, 2017, 111(1), 199.
10 Briccola D, Tomasin M, Netti T, et al. Frontiers in Materials, 2019, 6, 00035.
11 Briccola D, Cuni M, Juli A D, et al. Experimental Mechanics, 2020, 61, 515.
12 Xu Y L, Tian X G, Chen C Q. Physica B, 2012, 407(12), 1995.
13 Wang G. Research on the mechanism and the vibration attenuation cha-racteristic of locally resonant band gap in phononic crystals. Ph. D. Thesis, National University of Defense Technology, China, 2005(in Chinese).
王刚. 声子晶体局域共振带隙机理及减振特性研究. 博士学位论文, 国防科学技术大学, 2005.
14 Liu R Q, Zhao H J, Li C Z, et al. Journal of Vibration and Shock, 2016, 35(15), 53(in Chinese).
刘荣强, 赵浩江, 李长洲, 等. 振动与冲击, 2016, 35(15), 53.
15 Gao N S, Shen L, Hou H. Analysis and application of vibration and noise reduction characteristics of phononic crystals, Northwestern Polytechnical University Press, China, 2017, pp.25(in Chinese) .
高南沙, 沈礼, 侯宏. 声子晶体减振降噪特性分析研究及应用, 西北工业大学出版社, 2017, pp. 25.
16 Zhu L X, Wang Y M, Zong L, et al. Journal of Naval University of Engineering, 2014, 26(6), 64(in Chinese).
朱龙翔, 王悦民, 宗侣, 等. 海军工程大学学报, 2014, 26(6), 64.
17 Zhao D. The research of dynamics property and longtime subsidence about corrosion weathered red layer under base of subway tunnel. Ph. D. Thesis, Central South University, 2013(in Chinese).
赵丹. 地铁隧道基底溶蚀风化红层动力特性及长期沉降变形研究. 博士学位论文, 中南大学, 2013.
13 Ge H. Study on vibration damping mechanism of magnetorheological damping floating slab track. Master's Thesis, Southwest Jiaotong University, 2018(in Chinese).
葛辉. 磁流变阻尼浮置板轨道减振机理研究. 硕士学位论文, 西南交通大学, 2018.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[3] 张辉霞, 贾相华, 左桂鸿, 孙芳. 片状焦钒酸锌的制备及光催化性能[J]. 材料导报, 2021, 35(Z1): 48-50.
[4] 陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
[5] 郭德双, 王登魁, 王新伟, 孟兵恒, 方铉, 房丹, 魏志鹏. 氢气退火对ITO纳米颗粒能带结构的影响[J]. 材料导报, 2020, 34(Z1): 26-28.
[6] 陈龙飞, 游世辉, 赵小英. 二维声子晶体薄板隔声特性研究[J]. 材料导报, 2020, 34(Z1): 90-93.
[7] 王薇, 刘竟成, 霍旺晨, 王均, 王芊卉. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水[J]. 材料导报, 2020, 34(23): 23027-23032.
[8] 李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
[9] 张博强, 吴心平, 陈慧勇, 魏凤春, 朱丽峰, 李振涛, 李良. 局域共振型声子晶体在轮边驱动客车上的应用研究初探[J]. 材料导报, 2019, 33(z1): 141-144.
[10] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[11] 陈其苗, 宋禹忻, 张振普, 刘娟娟, 芦鹏飞, 李耀耀, 王庶民, 龚谦. 通过晶格失配调节有盖层张应变Ge量子点的光电特性[J]. 材料导报, 2018, 32(6): 1004-1009.
[12] 高南沙,侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 《材料导报》期刊社, 2018, 32(2): 322-326.
[13] 曾 琦, 李青松, 袁 伟, 周 宁, 张克勤. 非晶无序光子晶体结构色机理及其应用[J]. 材料导报, 2017, 31(1): 43-55.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed