Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080236-14    https://doi.org/10.11896/cldb.23080236
  特种工程材料 |
采用局域共振超材料混凝土提升结构消波防护性能:综述和展望
姚未来1, 刘元雪1,2,*, 孙涛1, 赵宏刚1, 穆锐1, 雷屹欣3
1 中国人民解放军陆军勤务学院,重庆 401311
2 岩土力学与地质环境保护重庆市重点实验室,重庆 401311
3 国家救灾应急装备工程技术研究中心,重庆 401311
Enhancing the Wave Damping Performance of Structures Using Local Resonance Metaconcrete: a Review and Prospect
YAO Weilai1, LIU Yuanxue1,2,*, SUN Tao1, ZHAO Honggang1, MU Rui1, LEI Yixin3
1 Army Logistics Academy of PLA, Chongqing 401311, China
2 Chongqing Key Laboratory of Geomechanics & Geoenvironmental Protection, Chongqing 401311, China
3 National Engineering and Technology Research Center for Disaster Relief and Emergency Equipment, Chongqing 401311, China
下载:  全 文 ( PDF ) ( 34885KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料是一种通过设计获得的人造材料,具备自然材料所不具备的超常物理性能,这种特殊性能并非来自于材料组分,而是来源于经过特别设计过的人工结构。超材料最初源自电磁学领域,可表现出频率禁带(带隙),即在该频谱范围内,电磁波传输将被有效抑制。这种能对电磁波加以操控和处理的特性为解决各类工程问题提供了方便,激发了人们将其迁移至其他学科领域的热情。随后,声学超材料被提出,可对声波进行类似的操控,实现消声和隔音。与之相似,力学超材料也应运而生,可利用带隙特性对应力波进行处理,实现消波、滤波,提升结构的防护性能。超材料混凝土是力学超材料在土木工程领域的一项具体应用,其利用人工骨料的局域共振行为产生带隙,实现特定频率应力波的阻断。可见,超材料混凝土从波的操控角度实现了防护性能,与传统防护材料通过强度、韧性实现防护目的的本质不同,具有明显的创新性,开展相关研究对提升结构的防护性能具有重要意义。本文对超材料混凝土自提出至今的主要研究进行系统梳理,立足于工程应用视角,对超材料混凝土消波的实际验证、共振骨料带隙特征及设计准则、共振骨料空间分布及掺量效应、动荷载下的能量转移规律、共振骨料的改造五个方面进行综述,最后总结了当前研究的主要结论,并紧扣工程实际应用提出了对未来研究的展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚未来
刘元雪
孙涛
赵宏刚
穆锐
雷屹欣
关键词:  超材料混凝土  能量带隙  消波滤波  防护工程    
Abstract: Metamaterials are man-made materials that are designed to have extraordinary physical properties not found in natural materials, not from the material components, but from specially designed artificial structures. Metamaterials originally originated in the field of electromagnetism. The materials are engineered to exhibit frequency forbidden bands (bandgaps), i.e., a spectral range within which electromagnetic wave transmissions are effectively suppressed. This ability to manipulate and handle electromagnetic waves facilitated the solution of various engineering problems and inspired its migration to other disciplines. Subsequently, acoustic metamaterials were proposed to similarly manipulate acoustic waves, enabling the silencing and insulation of sound. Similarly, mechanical metamaterials were also created, which utilizes bandgap properties to manipulate stress waves, achieving wave dissipation, filtering, and improving structural protection. Metaconcrete is a specific application of mechanical metamaterials in the field of civil engineering, which makes use of the local resonance behavior of artificial aggregates to generate a bandgap and realize the blocking of specific frequency stress waves. Metaconcrete from the wave manipulation point of view to achieve the protective performance, and the traditional protective materials through the strength, toughness to achieve the protective purpose are essentially different. To carry out research on metaconcrete to enhance the structural protective performance is of great significance. In this paper, the main research on metamaterial concrete has been systematically sorted out in the past ten years since it was proposed based on the perspective of engineering application. The practical verification of wave dissipation of metaconcrete, resonance aggregate bandgap characteristics and design guidelines, spatial distribution of resonance aggregate and admixture effect, energy transfer law under dynamic loading, and resonance aggregate modification are reviewed. The main conclusions of the current research are summarized, and the outlook of future research is put forward with close reference to the practical application of engineering.
Key words:  metaconcrete    bandgap    wave filtering and suppressing    protective engineering
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(41877219);重庆市自然科学基金院士专项(CSTB2023YSZX-JCX0004;CSTC2021YSZX-JCYJX0002);重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0194)
通讯作者:  *刘元雪,博士,教授,博士研究生导师,一直坚持岩土本构关系与地下工程稳定性、结构防护领域研究,近五年承担国家自然科学基金、全军军事装备理论等重大项目、课题共10项;获得中国交通运输学会科技进步奖一等奖和中国公路学会科学技术奖二等奖各一项;发表论文16篇,其中SCI一区3篇,教学核心期刊论文2篇;出版专著3部,1部获国家科学技术学术著作出版基金资助,2部列入“十三五”国家重点出版规划;获国家发明专利1项,软件著作权2项。兼任重庆市岩石力学与工程学会副理事长、中国岩土工程信息技术与应用分会常务理事。入选国务院政府特殊津贴、重庆英才-创新创业示范团队负责人、重庆市优秀博士论文和优秀硕士论文指导教师。 lyuanxue@vip.sina.com   
作者简介:  姚未来,博士,副教授,2013年6月毕业于重庆大学,获工学学士学位。2016年6月毕业于中国人民解放军后勤工程学院,获工学硕士学位。2019年12月毕业于中国人民解放军陆军勤务学院,获工学博士学位。现为中国人民解放军陆军勤务学院教员,在刘元雪教授的指导下开展博士后研究工作,目前主要从事超材料混凝土的防护性能研究。
引用本文:    
姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
YAO Weilai, LIU Yuanxue, SUN Tao, ZHAO Honggang, MU Rui, LEI Yixin. Enhancing the Wave Damping Performance of Structures Using Local Resonance Metaconcrete: a Review and Prospect. Materials Reports, 2024, 38(5): 23080236-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080236  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23080236
1 Liu J Y, Guo H B, Wang T. Crystals, 2020, 10(4), 1.
2 Brule S, Enoch S, Guenneau S. Physics Letters A, 2020, 384(1), 126034.
3 Dai H J, Zhang X T, Zheng Y J, et al. Front Physics, 2022, 10(12), 1069454.
4 He H, Li Y, Liu Y, et al. Composite Structures, 2023, 307, 116631.
5 Li Q Q, He Z C, Li E, et al. Journal of Applied Physics, 2019, 125(3), 035104.
6 Chen Z, Wang Z, Wu X, et al. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE). Salt Lake City, 2020.
7 Li Q Q, He Z C, Li E, et al. Smart Materials and Structures, 2018, 27(9), 095015.
8 Banerjee A, Calius E P, Das R. International Journal of Non-linear Mechanics, 2018, 103, 138.
9 Banerjee A, Calius E P, Das R. International Journal of Non-linear Mechanics, 2018, 101, 8.
10 Kadic M, Bueckmann T, Schittny R, et al. Reports on Progress in Phy-sics, 2013, 76(12), 126501.
11 Kadic M, Milton G W, van Hecke M, et al. Nature Reviews Physics, 2019, 1(3), 198.
12 Liu X N, Hu G K. Strojniski Vestnik Journal of Mechanical Engineering, 2016, 62(7), 403.
13 Bacquet C L, Al Babaa H, Frazier M J, et al. Advances in crystals and elastic metamaterials, Elsevier Academic Press Inc, 2018, pp. 115.
14 Balaji P S, Selvakumar K K. Journal of Vibration Engineering & Techno-logies, 2021, 9(2), 183.
15 Sengsri P, Kaewunruen S. Construction and Building Materials, 2020, 262, 120535.
16 Liu L, Lee H P. International Journal of Applied Mechanics, 2021, 13(9), 2150102.
17 Wanchoo P, Matos H, Rousseau C E, et al. Composite Structures, 2021, 263, 113530.
18 Wang K, Zhou J X, Tan D G, et al. Applied Mathematics and Mecha-nics, 2022, 43(7), 1125.
19 Guevara-corzo J J, Begambre-carrillo O J, Garcia-sanchez J A, et al. Structural Engineering and Mechanics, 2022, 82(4), 417.
20 Kennedy J, Lim C W. Materials Today Communications, 2022, 33, 104606.
21 Zheng X, Zhang X, Chen T T, et al. Advanced Materials, 2023, 2302530.
22 Li G, Tan L, Ren L, et al. Journal of Materials Research and Technology, 2023, 24, 4047.
23 Saatchi D, Oh S, Oh I K. Advanced Functional Materials, 2023, 33(31), 2214580.
24 Yazici B, Gul Z S. Journal of Testing and Evaluation, 2021, 49(5), 3183.
25 Mitchell S J, Pandolfi A, Ortiz M. Journal of the Mechanics and Physics of Solids, 2014, 65, 69.
26 Jin H X, Hao H, Chen W S, et al. Journal of Materials in civil Enginee-ring, 2022, 34(11), 1.
27 Hamdany A H, Ding Y, Qian S. Journal of Materials in civil Enginee-ring, 2021, 33(10), 1.
28 Smith D R, Dalichaouch R, Kroll N, et al. Journal of the Optical Society of America B, 1993, 10(2), 314.
29 Pendry J B. Physical Review Letters, 2000, 85(18), 3966.
30 Kushwaha M S, Halevi P, Dobrzynski L, et al. Physical Review Letters, 1993, 71(13), 2022.
31 Mitchell S J. Metaconcrete: engineered aggregates for enhanced dynamic performance. Ph. D. Thesis, California Institute of Technology, USA, 2016.
32 Brillouin L. Wave propagation in periodic structures, Mcgraw-hill Book Company, Inc, 1946.
33 Lee U. Engineering Structures, 1998, 20(7), 587.
34 Lee U. Engineering Structures, 2000, 22(6), 681.
35 Liu Z, Zhang X, Mao Y, et al. Science, 2000, 289(5485), 1734.
36 Liu Z, Chan C T, Ping S. Physical Review B: Condensed Matter, 2002, 65(16), 165116.
37 Li Y, He H, Chen H, et al. Construction and Building Materials, 2023, 384, 131322.
38 Mei J, Liu Z, Wen W, et al. Physical Review Letters, 2006, 96(2), 024301.
39 Huang H H, Sun C T. Mechanics of Materials, 2012, 46, 1.
40 Huang H H, Sun C T, Huang G L. International Journal of Engineering Science, 2009, 47(4), 610.
41 El Sherbiny M G, Placidi L. Archive of Applied Mechanics, 2018, 88(10), 1.
42 Nejadsadeghi M M A. Mechanics Research Communications, 2019, 95, 96.
43 Asiri S A, Al-zahrani Y Z. World Journal of Mechanics, 2014, 4(1), 1.
44 Cheng Z, Shi Z, Mo Y L, et al. Journal of Applied Physics, 2013, 114(3), 2022.
45 Yan Y, Cheng Z, Menq F, et al. In: Proceedings of the 22nd International Conference on Structural Mechanics in Reactor Technology, USA, 2013.
46 Shi Z, Huang J. Soil Dynamics and Earthquake Engineering, 2013, 50, 204.
47 Chen Z, Wang G, Lim C W. Engineering Structures, 2023, 276, 115375.
48 Ansari M, Zacharias C, Koenke C. Materials, 2023, 16(5), 1836.
49 Mitchell S J, Pandolfi A, Ortiz M. Mechanics of Materials, 2015, 91, 295.
50 Sheng P, Zhang X, Liu Z, et al. Physica B: Condensed Matter, 2003, 1(4), 338.
51 Mitchell S J, Pandolfi A, Ortiz M. Journal of Engineering Mechanics, 2016, 142(4), 1.
52 Jin H X, Chen W S, Hao H, et al. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(2), 78(in Chinese).
靳贺欣, 陈文苏, 郝洪, 等. 中国科学: 物理学 力学 天文学, 2020, 50(2), 78.
53 Jin H, Hao H, Hao Y, et al. Construction and Building Materials, 2020, 252, 118920.
54 Jin H X, Hao H, Chen W S, et al. International Journal of Structural Stability and Dynamics, 2021, 21(9), 1.
55 Jin H X, Hao H, Chen W S, et al. Mechanics of Advanced Materials and Structures, 2021, 30(1), 1.
56 Liu Y, An X Y, Chen H L, et al. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106294.
57 Liu Y, Shi D Y, He H G, et al. Engineering Structures, 2022, 262, 114392.
58 Han J, Lu G Y. Journal of Vibration and Shock, 2021, 40(8), 173(in Chinese).
韩洁, 路国运. 振动与冲击, 2021, 40(8), 173.
59 Han J, Lu G Y, Zhao Y T. Journal of Vibration and Shock, 2022, 41(4), 239(in Chinese).
韩洁, 路国运, 赵一涛. 振动与冲击, 2022, 41(4), 239.
60 Zhang E, Lu G Y, Yang H W, et al. Explosion and Shock Waves, 2020, 40(6), 69(in Chinese).
张恩, 路国运, 杨会伟, 等. 爆炸与冲击, 2020, 40(6), 69.
61 Xu C, Chen W S, Hao H, et al. International Journal of Impact Engineering, 2022, 159, 104052.
62 Xu C, Chen W S, Hao H, et al. International Journal of Solids and Structures, 2021, 232, 111182.
63 Xu C, Chen W S, Hao H, et al. Construction and Building Materials, 2021, 311, 125273.
64 Xu C, Chen W S, Hao H, et al. Engineering Structures, 2022, 263, 114382.
65 Xu C, Chen W S, Hao H, et al. Construction and Building Materials, 2022, 351, 128974.
66 Xu C, Chen W S, Hao H. Journal of the Mechanics and Physics of So-lids, 2020, 139, 103929.
67 Briccola D, Cuni M, De Julia, et al. Experimental Mechanics, 2021, 61(3), 515.
68 Briccola D, Ortiz M, Pandolfi A. Journal of Applied Mechanics-Transactions of the ASME, 2017, 84(3), 031001.
69 Briccola D, Pandolfi A. Frontiers in Materials, 2021, 7, 615189.
70 Briccola D, Tomasin M, Netti T, et al. Frontiers in Materials, 2019, 6, 00035.
71 Kettenbeil C, Ravichandran G. International Journal of Impact Enginee-ring, 2018, 111, 199.
72 Vo N H, Pham T M, Hao H, et al. International Journal of Mechanical Sciences, 2022, 221, 107219.
73 Sheng P, Zhang X, Liu Z, et al. Physica B: Condensed Matter, 2003, 1(4), 338.
74 Gao Y J, Fan H L, Zhang P, et al. Journal of Vibration and Shock, 2018, 37(20), 39(in Chinese).
郜英杰, 范华林, 张蓓, 等. 振动与冲击, 2018, 37(20), 39.
75 Tan S H, Poh L H, Tkalich D. International Journal for Numerical Met-hods in Engineering, 2019, 119(13), 1395.
76 Zhang E, Zhao H, Lu G, et al. Latin American Journal of Solids and Structures, 2023, 20(2), 1.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[3] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[10] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[11] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[12] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[13] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[14] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[15] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed