Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23064-23073    https://doi.org/10.11896/cldb.19090221
  无机非金属及其复合材料 |
碳化硼陶瓷的力学特性和破坏行为研究进展
蒋招绣, 高光发
南京理工大学机械工程学院,南京 210094
Research Progress on Mechanical Properties and Failure Behavior of Boron Carbide Ceramics
JIANG Zhaoxiu, GAO Guangfa
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 5303KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳化硼陶瓷具有高熔点、高硬度、高强度和低密度的特征,作为一种性能优异的特种陶瓷,在以减重与防护能力为首的轻型装甲中,成为优先选择的装甲陶瓷材料。对于陶瓷材料的抗弹,通常是以自身损伤断裂来消耗弹丸的动能,在弹道冲击下,陶瓷靶不仅处于复杂的应力状态,同时还受应力波波动的影响,整个损伤断裂演化是一个极其复杂的过程,其最终的抗弹性能,除了受材料自身的物理、力学特性影响外,还取决于弹丸的材料、形貌与边界条件。因此,对于装甲陶瓷材料的抗弹性能研究,不仅要关注其物理力学特性,同时还要关注其在不同载荷条件下的破坏行为。本文从装甲陶瓷的抗弹机理出发,对不同烧结方法制备的碳化硼陶瓷材料的韧性、硬度与强度进行总结,探讨碳化硼陶瓷在不同冲击载荷下的断裂机理、非晶化行为,并归纳了损伤本构模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋招绣
高光发
关键词:  装甲陶瓷  碳化硼  抗弹机理  力学特性  破坏机理    
Abstract: Boron carbide ceramics have the characteristics of high melting point, high hardness, high strength and low density. As a kind of special ceramics with excellent performance, boron carbide has become the preferred choice of armor ceramics in the lightweight armor with weight reduction and protection capability. For ballistic behavior of armor ceramic materials, the kinetic energy of projectiles is usually consumed by the damage and fracture of ceramic materials. Under ballistic impact loading, the armor ceramics are always in complicated stress state, and also affected by the wave stress propagation, the whole damage and fracture of it is a complicated process. The ballistic performance of armor ceramics depend not only on the physical and mechanical properties of the material itself, but also on the boundary conditions and projectile materials and morphology. Therefore, in order to study the ballistic performance of armor ceramics, besides its physical and mechanical properties, we should also pay more attention to study their failure behavior under different loads. In this paper, on the base of ballistic resistance mechanism of armor ceramics, the research of mechanical properties and failure behavior for boron carbide ceramics are reviewed comprehensively. The hardness, toughness and strength of boron carbide ceramics for different sintering methods are analyzed. The fracture mechanism and amorphous behavior of boron carbide ceramics under different impact loads are discussed, and the damage constitutive model of ceramics are summarized.
Key words:  armor ceramic    boron carbide    ballistic resistance mechanism    mechanical properties    failure mechanism
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  O341  
  O346  
  O347  
基金资助: 国家自然科学基金(11772160;11472008;11202206);爆炸科学与技术国家重点实验国家重点实验室基金(KFJJ18-01M);冲击与安全工程教育重点实验室(宁波大学)开放课题(Cj201903);国防科技创新特区项目,“十三五”装备预研领域基金(KFJJ13-9M);中央高校基本科研业务费专项资金(30915118801)
通讯作者:  gfgao@ustc.edu.c   
作者简介:  蒋招绣,2018年3月博士毕业于宁波大学机械工程学院工程力学专业,目前在南京理工大学兵器科学与技术专业进行博士后研究工作,主要从事材料动态响应及断裂相关的研究。近年来,已发表论文15篇,其中SCI、EI共10篇,发明专利一项,参与多项国防重点项目。
高光发,南京理工大学机械工程学院教授、博士研究生导师。2010年博士毕业于中国科学技术大学工程学院; 2011—2015年期间分别在中国科学技术大学和新加坡国立大学进行博士后研究工作;2016年回国任南京理工大学教授。近年来,负责国家级科研项目(包含国家自然科学基金等面上和国防重大项目等项目)8项,省部级项目多项;作为主要成员承担国防重点和重大项目等国家级项目9项;出版著作4部,发表学术论文40余篇。
引用本文:    
蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
JIANG Zhaoxiu, GAO Guangfa. Research Progress on Mechanical Properties and Failure Behavior of Boron Carbide Ceramics. Materials Reports, 2020, 34(23): 23064-23073.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090221  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23064
1 Viechnicki D J, Slavin M J, Kliman M I. American Ceramic Society Bulletin,1991,70(6),1035.
2 Thévenot F. Journal of European Ceramic Society,1990,6,205.
3 Hou Hailiang, Zhu Xi, Kan Yulong. Acta Armamentarii,2008,29(2),94.
侯海量,朱锡,阚于龙.兵工学报,2008,29(2),94(in Chinese).
4 Cline C F, Wilkins M L. In: Proceedings of the Ceramic Armour Technology Symposium. USA,1969,pp.13.
5 Wu Yanping, Yan Qingzhi. Ordnance Material Science and Engineering,2017,40(4),141(in Chinese).
吴燕平,燕青芝.兵器材料科学与工程,2017,40(4),141.
6 Medvedovski E. Ceramics International,2010,36(7),2103.
7 Long Liang, Liu Binggang, Luo Hao, et al. Materials Review,2019,33(S1),184(in Chinese).
龙亮,刘炳刚,罗昊,等.材料导报,2019,33(专辑33),184.
8 Hu Yulong. Ordnance Material Science and Engineering,1996,19(5),37(in Chinese).
胡玉龙.兵器材料科学与工程,1996,19(5),37.
9 Tang Guohong, Zhang Xinghua, Chen Chanlin. Materials Review,1994,8(8),69(in Chinese).
唐国宏,张兴华,陈昌麟.材料导报,1994,8(8),69.
10 Suri A K, Subramanian C, Sonber J K, et al. International Materials Reviews,2010,55,4.
11 Moshtaghioun B M, Ortiz A L, Gómez-García D, et al. Journal of Euro-pean Ceramic Society,2015,35,1991.
12 Zhang Z, Du X, Wang J, et al. Powder Technology,2014,254,131.
13 Sherman D, Benshushan T. International Journal of Impact Engineering,1998,21(4),245.
14 Shockey D A, Marchand A H, Skaggs S R, et al. International Journal of Impact Engineering,1990,9(3),263.
15 Chen Gang, Zhang Song, Wang Chuanbin, et al. Journal of Synthetic Crystals,2009,38(1),170(in Chinese).
陈刚,章嵩,王传彬,等.人工晶体学报,2009,38(1),170.
16 Wang Lingsen, Fang Yinchu, Ying Bangyue. Materials Science and Engineering of Powder Metallurgy,2001,6(4),255(in Chinese).
王零森,方寅初,尹邦跃.粉末冶金材料科学与工程,2001,6(4),255.
17 Wang Lingsen. Journal of Central South University (Science and Techno-logy),2002,33(6),597(in Chinese).
王零森.中南大学学报(自然科学版),2002,33(6),597.
18 Du Xianwu, Zhang Zhixiao, Wang Weimin, et al. Journal of Inorganic Materials,2013,28(10),1062(in Chinese).
杜贤武,张志晓,王为民,等.无机材料学报,2013,28(10),1062.
19 Bai Kewu, Wang Yonglan. Journal of Xi’an Jiaotong University,1994,28(7),73(in Chinese).
白克武,王永兰.西安交通大学学报,1994,28(7),73.
20 Chen Xiaowei, Chen Yuze. Advances in Mechanics,2006,36(1),85(in Chinese).
陈小伟,陈裕泽.力学进展,2006,36(1),85.
21 Sternberg J. Journal of Applied Physics,1989,65(9),3417.
22 Neshpor V C, Zaitsev G P, Dovgal E J, et al. In: Ceramics: Charting the Future, Proceedings of the 8th CIMTEC. Florence, Italy,1994, pp.2395.
23 Satapathy S, Bless S. Mechanics of Materials,1996,23,323.
24 Rosenberg Z, Yeshurun Y. International Journal of Impact Engineering,1988,7(3),357.
25 Cortés R, Navarro C, Martínez M A, et al. International Journal of Impact Engineering,1992,12(4),639.
26 Li J C, Chen X W, Ning F, et al. International Journal of Impact Engineering,2015,83,37.
27 Rosenberg Z. Journal of Applied Physics,1993,74(1),752.
28 Karandikar P G, Evans G, Wong S, et al. In: Advances in Ceramic Armor IV: Ceramic Engineering and Science Proceedings. USA, 2009, pp.163.
29 Cui F D, Ma T, Li W P, et al. Journal of Inorganic Materials,2017,32(9),967(in Chinese).
崔凤单,马天,李伟萍,等.无机材料学报,2017,32(9),967.
30 Hu D, Zhang Y, Shen Z, et al. Ceramics International,2017,43(13),10368.
31 Naik N, Kumar S, Ratnaveer D, et al. International Journal of Damage Mechanics,2013,22(2),145.
32 Lee H, Speyer R F. Journal of the American Ceramic Society,2003,86,1468.
33 Roy T K, Subramanian C, Suri A K. Ceramics International,2006,32,227.
34 Lee H, Speyer R F. Journal of the American Ceramic Society,2002,85,1291.
35 Chen M W, McCauley J W, LaSalvia J C. Journal of the American Cera-mic Society,2005,88,1935.
36 Angers R, Beauvy M. Ceramics International,1983,10,49.
37 Du X, Zhang Z, Wang Y, et al. Journal of the American Ceramic Society,2015,98,1400.
38 Moshtaghioun B M, Cumbrera-Hernández F L, Gómez-García D, et al. Journal of European Ceramic Society,2013,33(2),361.
39 Moshtaghioun B M, Cumbrera-Hernández F L, Ortiz A L, et al. Journal of European Ceramic Society,2014,34,841.
40 Sairam K, Sonber J K, Murthy T S R C, et al. International Journal of Refractory Metals and Hard Materials,2014,42,185.
41 Hayun S, Kalabukhov S, Ezersky V, et al. Ceramics International,2010,36,451.
42 Zhang F, Fu Z, Zhang J,et al. Ceramics International,2010,36,1491.
43 Hayun S, Paris V, Dariel M P, et al. Journal of European Ceramic Society,2009,29(16),3395.
44 Moshtaghioun B M, Gomez-Garcia D, Dominguez-Rodriguez A, et al. Journal of European Ceramic Society,2016,36(7),1829.
45 Zhang X, Gao H, Zhang Z, et al. Ceramics International,2017,43(8),6345.
46 Hall E O. Proceedings of the Physical Society,Section B,1951,64.47.
47 Sun J L, Liu J X, Liu C X. Materials Review,2005,19(S1),401(in Chinese).
孙军龙,邓建新,刘长霞.材料导报,2005,19(专辑19),401.
48 Zorzi J E, Perottoni C A, Jornada J. Materials Letters,2005,59,2932.
49 Levin L, Frage N, Dariel M P. Metallurgical and Materials Transactions A,1999,30,3021.
50 Kim W H, Koh Y H, Kim H E. Journal of the American Ceramic Society,2000,83,2863.
51 Tang J, Tan S H, Chen Z M, et al. Journal of Inorganic Materials,1997,12(2),169(in Chinese).
唐军,谭寿洪,陈忠明,等.无机材料学报,1997,12(2),169.
52 Huang S G, Vanmeensel K, Malek O J A, et al. Materials Science and Engineering,2011,528(3),1302.
53 Yin Z, Hannard F, Barthelat F. Science,2019,364,1260.
54 Chen Y Q, Li H X, Liu G Q. Materials Review A: Review Papers,2019,33(9),2847.
陈勇强,李红霞,刘国齐.材料导报:综述篇,2019,33(9),2847.
55 Zhou F H, Wang Y G. In: International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. Belgium,2009,pp.1311.
56 Hogan J D, Farbaniec L, Sano T, et al. Acta Materialia,2016,102,263.
57 Zhou F H, Molinari J F. International Journal of Solids and Structures,2004,41,6573.
58 Song Shuncheng, Wang Mingchao, Liu Youling, et al. Explosion and Shock Waves,2009,29(2),167.
宋顺成,王明超,刘筱玲,等.爆炸与冲击,2009,29(2),167.
59 Belon R, Antou G, Pradeilles N, et al. Ceramics International,2017,43(8),6631.
60 Bouchacourt M, Thévenot F. Journal of the Less-Common Metals,1981,82(81),227.
61 Farbaniec L, Hogan J, Mccauley J, et al. International Journal of Applied Ceramic Technology,2016,13(6),1008.
62 Sano T, Shaeffer M, Vargasgonzalez L, et al. Dynamic behavior of mate-rials, Springer International Publishing, Switzerland,2014.
63 Swab J J, Meredith C S, Daniel T, et al. Journal of Materials Science,2017,52(17),10073.
64 Grady D E. Journal of Applied Physics,2015,117(16),6041.
65 Grady D E. Shock compression of condensed matter, New York, American Institute of Physics,1991.
66 Grady D E. Journal de Physique IV,1994,4(C8),385.
67 Chocron S, Anderson C E, Dannemann K A, et al. Journal of the American Ceramic Society,2012,95(1),350.
68 Paris V, Frage N, Dariel M P, et al. International Journal of Impact Engineering,2010,37(11),1092.
69 Paris V, Frage N, Dariel M P, et al. International Journal of Impact Engineering,2011,38(4),228.
70 Bourne N K. Proceedings of the Royal Society A, 2002,458(2024),1999.
71 Sherman D, Brandon D G. Journal of Materials Research,1997,12,1335.
72 Hogan J D, Farbaniec L, Mallick D, et al. International Journal of Impact Engineering,2017,102,47.
73 Yu Y, Wang W Q, Yang J, et al. Acta Physica Sinica,2012,61(4),048103(in Chinese).
喻寅,王文强,杨佳,等.物理学报,2012,61(4),048103.
74 Grady D E. Journal of Applied Physics,1982,53,322.
75 Glenn L A, Chudnovsky A. Journal of Applied Physics,1986,59,1379.
76 Paliwal B, Ramesh K T. Scripta Materialia,2007,57(6),481.
77 Nie H, Yu Y, Liu Y, et al. Ferroelectric Ceramics,2017,100(12),5693.
78 Chen M, Mccauley J W, Hemker K J. Science,2003,299(5612),1563.
79 Ge D, Domnich V, Juliano T, et al. Acta Materialia,2004,52(13),3921.
80 Ghosh D, Subhash G, Zheng J Q, et al. Journal of Applied Physics,2012,111(6),063523.
81 Yan X Q, Li W J, Goto T, et al. Applied Physics Letters,2006,88(13),131905.
82 Yan X Q, Tang Z, Zhang L, et al. Physical Review Letters,2009,102(7),075505.
83 Zhao S, Kad B, Remington B A, et al. Proceeding of the National Academy of Sciences of the United States of America,2016,113(43),12088.
84 Grady D E. International Journal of Impact Engineering,2011,38(7),661.
85 Johnson G R, Holmquist T J. In: Proceedings of EXPLOMET Confe-rence. San Diego,1990, pp.1075.
86 Johnson G R, Holmquist T J. Journal of Applied Physics,1999,85(12),8060.
87 Holmquist T J, Johnson G R. International Journal of Impact Enginee-ring,2008,35(8),742.
88 Clayton J D. Mechanics Research Communications,2013,49,57.
89 Clayton J D, Tonge A L. International Journal of Solids and Structures,2015,64,191.
90 Tonge A L, Ramesh K T. Journal of the Mechanics and Physics of Solids,2015,86,237.
91 Perol T, Bhat H S. Pure and Applied Geophysics,2016,173(8),2857.
92 Ren Huilan, Ning Jianguo. Journal of Materials Engineering,2007(3),18(in Chinese).
任会兰,宁建国.材料工程,2007(3),18.
[1] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[2] 段开瑞, 高英力, 周文娟, 裴甘鹏, 何倍. 动静态成型条件下预裂水稳碎石的力学特性[J]. 材料导报, 2020, 34(10): 10068-10075.
[3] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[4] 曹雷刚, 王晓荷, 崔岩, 杨越, 刘园. 碳化硼粒度对无压浸渗高体分铝基复合材料微观组织和力学性能的影响[J]. 材料导报, 2019, 33(20): 3472-3476.
[5] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[6] 樊凯, 卢雪峰, 张典堂, 钱坤. 针刺密度对三维碳毡增强树脂炭复合材料力学性能的影响[J]. 材料导报, 2019, 33(14): 2450-2455.
[7] 薛秀丽, 曾超峰, 王世斌, 何巍. 软物质力学:行为特性、理论模型和测试方法[J]. 材料导报, 2018, 32(15): 2693-2700.
[8] 张晨, 应国兵, 王乘, 王鹏举, 田宝娜, 韩建兴, 王香. 高孔隙率多孔氮化硅构件较高马赫数下流-热-固耦合力学特性分析*[J]. 《材料导报》期刊社, 2017, 31(4): 131-136.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed