Please wait a minute...
材料导报  2020, Vol. 34 Issue (23): 23074-23080    https://doi.org/10.11896/cldb.19100096
  无机非金属及其复合材料 |
以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展
王成君, 段志英, 苏琼, 王爱军, 孟淑娟
西北民族大学化工学院,甘肃省高校环境友好复合材料及生物质利用省级重点实验室,兰州 730030
Research Progress in Photo-thermal Conversion and Storage of Multistage Porous Carbon Supported Composite Phase Change Materials
WANG Chengjun, DUAN Zhiying, SU Qiong, WANG Aijun, MENG Shujuan
Key Laboratory of Utility of Environmental Friendly Composite Materials and Biomass in Universities of Gansu Province, School of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, China
下载:  全 文 ( PDF ) ( 3788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在可再生能源中,太阳能是一种绿色能源,它具有分布广泛、周期短、功率大、易得、无污染等优点。然而,到目前为止,由于太阳辐射的间断性和不稳定性,太阳能的大规模利用一直面临着限制。尤其在一些太阳能热应用设施中,夜间需求仍然不能满足,因此,为了确保太阳能供应的理想水平和提高能源效率,潜热蓄能(LHTES)技术的研究受到前所未有的关注。LHTES可以吸收和释放热量,减少温度波动,并在相对低的质量和体积下提供高能量密度。相变材料(PCMs)作为理想的热能储存介质,可以捕获和储存热能,以供在先进的能源生产系统中使用。因此,发展新型的太阳能储能材料以提高其运行效率已成为近年来的重要研究课题。特别是开发具有高潜热、高导热、形状稳定的复合相变材料(SSPCMs)吸收和储存太阳能,更具有广阔的应用前景。碳材料对光具有很强的吸收,表现出极强的光热转换能力。以碳材料为吸附载体或填料的形式与有机相变材料进行复合,利用其优异的导热性能来提高有机相变材料的导热系数,已成为储热技术的研究热点。本文通过对多级孔碳材料作为SSPCMs载体的关键研究进展进行综述,总结和讨论了孔径、表面改性、相互作用力、组分等对SSPCMs相变行为的影响,为高效设计和构建SSPCMs奠定了基础;重点介绍了新型多级孔碳复合相变材料的导热性、PCMs的负载率和热能储存等性能以及在太阳能光热转换与存储方面的实际应用;最后,展望了多级孔碳复合SSPCMs未来的发展方向和挑战,以期为制备高光热转换效率的新型复合相变材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王成君
段志英
苏琼
王爱军
孟淑娟
关键词:  多级孔碳  相变材料  蓄热  光热转换    
Abstract: Among the renewable energy sources, solar energy is a kind of green energy, which has the advantages of extensive distribution, short periodicity, strong power, accessible and no pollution. However, until now, massive utilization of the solar energy faces limitations due to the intermittent and unstable nature of solar radiation. In some solar heat application facilities, sustained solar energy demand still cannot be satisfied during night hours. Therefore, to ensure a desired level of solar energy supply and promote energy efficiency, the research on latent heat storage (LHTES) technology has attracted unprecedented attention, because it can absorb and release heat, reduce temperature fluctuations, and provide high energy density at relatively low mass and volume. Phase change materials (PCMs) are ideal heat storage media that can capture and store heat for use in advanced energy production systems. Thus, the development of novel solar energy storage materials to enhance the operational efficiency has become an important research topic in recent years. Especially, the development of composite phase change materials with high latent heat and shape stabilized to absorb and store solar energy is propounded to have much promising applications. In this study, a fully-described review of key research progress on the field of multistage porous carbon as SSPCMs supports is summarized. The effects of pore size, surface modification, interaction forces, compositions, etc. on the phase change behaviors of SSPCMs are summarized and discussed, which laid a foundation for efficient design and construction of SSPCMs, mainly introduced the new multilevel hole carbon composite phase change materials thermal conductivity, the PCMs properties, such as the load rate, the phase change latent heat, the solar-thermal conversion and storage has practical application value. Finally, the development direction and challenges of multistage porous carbon composite SSPCMs are prospected.
Key words:  multistage porous carbon    phase change materials    thermal energy storage    photo-thermal conversion
               出版日期:  2020-12-10      发布日期:  2020-12-24
ZTFLH:  TK02  
基金资助: 中央高校基本科研业务费专项资金(31920150067);甘肃省青年科技基金计划项目(17JR5RA276)
通讯作者:  573728404@qq.com   
作者简介:  王成君,西北民族大学化工学院讲师,2012年在兰州理工大学化学工艺专业取得硕士学位,先后主持甘肃省青年基金一项,中央高校基本科研业务项目一项。参与国家自然科学基金一项,甘肃省自然科学基金一项。近年来,在相变材料储能领域发表论文5篇。
引用本文:    
王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
WANG Chengjun, DUAN Zhiying, SU Qiong, WANG Aijun, MENG Shujuan. Research Progress in Photo-thermal Conversion and Storage of Multistage Porous Carbon Supported Composite Phase Change Materials. Materials Reports, 2020, 34(23): 23074-23080.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100096  或          http://www.mater-rep.com/CN/Y2020/V34/I23/23074
1 Hussain A, Arif S M, Aslam M, et al. Renewable & Sustainable Energy Reviews,2017,71,12.
2 Nkhonjera L, Belloochende T, John G R, et al. Renewable & Sustainable Energy Reviews,2017,75,157.
3 Ahmed S F, Khalid M, Rashmi W, et al. Renewable & Sustainable Energy Reviews,2017,67,450.
4 Ghaib K. Chemie Ingenieur Technik,2017,89(9),1115.
5 Pielichowsk A K, Pielichowski K. Progress in Materials Science,2014,65(10),67.
6 Amaral C, Vicente R, Marques P, et al. Renewable & Sustainable Energy Reviews,2017,79,1212.
7 Latibari S T, Sadrameli S M. Solar Energy,2018,170,1130.
8 Da Cunha J P, Eames P. Applied Energy,2016,177,227.
9 Li Y Y, Zhang X L, Xu X F, et al. Chemical Industry and Engineering Progress,2018,37(2),689(in Chinese).
李玉洋,章学来,徐笑锋,等.化工进展,2018,37(2),689.
10 Chen Y, Jiang Q H, Xin J W, et al. Joural of Materials Engineering,2019,47(7),1(in Chinese).
陈颖,姜庆辉,辛集武,等.材料工程,2019,47(7),1.
11 Nazir H, Batool M, Osorio F J B, et al. International Journal of Heat and Mass Transfer,2019,129,491.
12 Zhu M C, Zhou G B, Yang F, et al. Chemical Industry and Engineering Progress,2018(6),28(in Chinese).
朱茂川,周国兵,杨霏,等.化工进展,2018(6),28.
13 Chen T, Sun H X, Zhu Z Q, et al. Chemical Industry and Engineering Progress,2019,38(7),3265(in Chinese).
陈涛,孙寒雪,朱照祺,等.化工进展,2019,38(7),3265.
14 Zhang N, Yuan Y P, Cao X L. Advance Engineering Materials,2018,20,1700753.
15 Zhu J Q, Song Y, Zhou W B, et al. Energy Storage Science and Techno-logy,2017,6(2),213(in Chinese).
朱教群,宋轶,周卫兵,等.储能科学与技术,2017,6(2),213.
16 Fang G Y, Tang F, Cao L. Renewable and Sustainable Energy Reviews,2014,40,237.
17 Jamekhorshid A, Sadrameli S M, Farid M. Renewable and Sustainable Energy Reviews,2014,31,531.
18 Liu L, Alva G, Huang X, et al. Renewable and Sustainable Energy Reviews,2016,66,399.
19 Ren H, Tang M, Guan B, et al. Advanced materials,2017,29(38),1702590.
20 Akhiani A R, Mehrali M, Tahan Latibari S, et al. The Journal of Physical Chemistry C,2015,119(40),22787.
21 Temel U N, Kurtulus S, Parlak M, et al. Journal of Thermal Analysis and Calorimetry,2018,132(1),631.
22 Li B, Nie S, Hao Y, et al. Energy Conversion and Management,2015,98,314.
23 Wang Y M, Tang B T, Zhang S F. Advanced Functional Materials,2013,23(35),4354.
24 Zhang Q, Liu J. Solar Energy Materials and Solar Cells,2019,190,1.
25 Xu B, Wang B, Zhang C, et al. Thermochimica Acta,2017,652,77.
26 Huang Y, Zhang H, Wan X, et al. Journal of Materials Chemistry,2017,5(16),7482.
27 Liu L K, Su D, Tang Y J, et al. Renewable & Sustainable Energy Reviews,2016,62,305.
28 Ramakrishnan S, Wang X, Sanjayan J. Energy and Buildings,2018,169,206.
29 Xue F, Lu Y, Qi X, et al. Chemical Engineering Journal,2019,365,20.
30 Zhang Y, Wang J, Qiu J, et al. Applied Energy,2019,237,83.
31 Tang L S, Yang J, Bao R Y, et al. Energy Conversion and Management,2017,146,253.
32 Xia Y, Zhang H, Huang P, et al. Chemical Engineering Journal,2019,362,909.
33 Li M, Wang C C. Renewable Energy,2019,141,1005.
34 Yang J, Jia Y, Bing N, et al. Applied Thermal Engineering,2019,163,114412.
35 Chen T, Liu C, Mu P, et al. Chemical Engineering Journal,2020,382,122831.
36 Balandin A A. Nature Materials,2011,10,569.
37 Huang X, Chen X, Li A, et al. Chemical Engineering Journal,2019,356,641.
38 Yang J, Qi G, Liu Y, et al. Carbon,2016,100,693.
39 Mu B Y, Li M. Solar Energy Materials and Solar Cells,2019,191,466.
40 Li G, Zhang X, Wang J, et al. Journal of Materials Chemistry A,2016,4(43),17042.
41 Zhang L, Li R, Tang B, et al. Nanoscale,2016,8(30),14600.
42 Ji H, Sellan D P, Pettes M T, et al. Energy & Environmental Science,2014,7(3),1185.
43 Yan Z, Ma L, Zhu Y, et al. ACS Nano,2012,7(1),58.
44 Yang J, Qi G Q, Bao R Y, et al. Energy Storage Materials,2018,13,88.
45 Chen K, Shi L, Zhang Y, et al. Chemical Society Reviews,2018,47(9),3018.
46 Wang D W, Yu R S, Yan H, et al. Materials Review B: Research Papers,2014,28(12),70(in Chinese).
王大伟,余荣升,晏华,等.材料导报:研究篇,2014,28(12),70.
47 Lin Y, Zhu C, Alva G, et al. Applied Energy,2018,228,1801.
48 Xie M, Huang J, Ling Z, et al. Solar Energy Materials and Solar Cells,2019,201,110081.
49 Ren W, Cao L, Zhang D. International Journal of Energy Research, DOI:10.1002/er.4900.
50 Li C, Zhang B, Xie B, et al. Sustainable Cities and Society,2019,44,458.
51 Han C, Wang S, Wang J, et al. Nano Research,2014,7(12),1809.
52 Li Y, Samad Y A, Polychronopoulou K, et al. Journal of Materials Chemistry A,2014,2(21),7759.
53 Wei Y, Li J, Sun F, et al. Green Chemistry,2018,20(8),1858.
54 Chen X, Gao H, Yang M, et al. Nano Energy,2018,49,86.
55 Atinafu D G, Dong W, Huang X, et al. Solar Energy Materials and Solar Cells,2018,179,392.
56 Maleki M, Karimian H, Shokouhimehr M, et al. Chemical Engineering Journal,2019,36,2469.
[1] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[2] 朱思贤, 邹得球, 鲍家明, 贺瑞军, 吴锦飞, 张国彤. 相变材料的过冷特性及调控研究进展[J]. 材料导报, 2020, 34(19): 19075-19082.
[3] 王佩祥, 冯秀娟, 朱易春, 蒋达华. 利用膨胀石墨改进十二水磷酸氢二钠复合相变材料的蓄热性能[J]. 材料导报, 2020, 34(18): 18044-18048.
[4] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王博, 朱孝钦, 胡劲, 常静华, 陈洋, 史杰. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819.
[7] 张正飞, 秦紫依, 李勇, 王毅. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619.
[8] 孙诚, 顾佳俊, 章潇慧, 祝弘滨, 刘佰博, 张丽娇, 刘庆雷, 张旺, 张荻. 基于生物精细构型的光催化材料和光热转换材料的研究进展[J]. 材料导报, 2019, 33(21): 3662-3668.
[9] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[10] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[11] 马晨雨, 李晓禹, 张绘, 李建强, 赵建玲, 贺刚, 李江涛, 齐涛. 亚微米级Ti4O7的制备及其光热转换性能[J]. 材料导报, 2018, 32(23): 4079-4083.
[12] 李云涛, 晏华, 余荣升, 王群. 基于功效系数法的复合相变材料综合性能评价研究*[J]. CLDB, 2017, 31(8): 135-139.
[13] 李云涛, 晏华, 汪宏涛, 王群, 赵思勰. 正癸酸-月桂酸-硬脂酸三元低共熔体系/膨胀石墨复合相变材料的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(4): 94-99.
[14] 黄雪, 崔英德, 尹国强, 张步宁, 冯光炷. 癸酸-棕榈酸-硬脂酸/膨胀石墨蓄能复合相变材料的制备与热性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 52-56.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed