Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13168-13176    https://doi.org/10.11896/cldb.20020105
  金属与金属基复合材料 |
热加工对硫化物及氧化物夹杂的影响
郑浩1, 刘丽华2, 张中武1,*
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150000
2 南京钢铁股份有限公司,南京 210035
Effects of Hot Processing on Sulfide and Oxide Inclusions
ZHENG Hao1, LIU Lihua2, ZHANG Zhongwu1,*
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150000, China
2 Nanjing Iron & Steel Co., LTD, Nanjing 210035, China
下载:  全 文 ( PDF ) ( 14213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着制造业的发展,人们对钢材的质量提出了更高的要求,而夹杂物是影响钢材质量十分重要的因素之一。特别是对高强钢而言,夹杂物对其韧性的影响更加敏感。因此,研究冶炼过程中对夹杂物的控制及后续热轧和热处理工艺对钢中夹杂物的影响,是钢铁材料制造和加工过程中的一个重要课题。夹杂物对钢材的强度、塑性、韧性、抗疲劳性能、耐腐蚀性能都会产生重要影响。要减少夹杂物对钢材性能的影响,需从优化冶炼工艺开始。随着气泡去除夹杂物技术、真空碳脱氧技术及中间包电磁搅拌技术在冶炼过程中的应用,钢材中的夹杂物含量明显降低。然而,在目前工业化的生产环境中,仍然无法实现将钢中的非金属夹杂物完全消除。目前的研究已经表明,热轧和热处理过程对夹杂物也有重要影响,这对进一步控制夹杂物的尺寸、分布、形态,达到减轻夹杂物对钢材性能影响的目的具有重要的意义。因此,目前除了发展新的冶炼工艺以进一步降低钢中的夹杂物含量外,研究和阐明热加工工艺对夹杂物的影响也是研究重点。文中归纳了冶炼过程中先进的夹杂物控制技术及其原理,评述了热变形和热处理过程对夹杂物的数量、尺寸、分布、形态特征及类型产生的影响,对研究钢材在制造、加工过程中夹杂物的变化规律及控制具有参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑浩
刘丽华
张中武
关键词:  钢铁材料  硫化物夹杂  氧化物夹杂  冶炼  热变形  热处理    
Abstract: With the development of industry, higher and higher requirements are set on the quality of steels. Inclusions are one of the most important factors that affect the quality of steels. Especially for high-strength steels, the toughness is more sensitive to inclusions. Therefore, it is an important topic to investigate the effects of processing parameters on inclusion evolution during smelting, hot rolling and heat treatment processes. Inclusions have a significant impact on all the strength, plastic, toughness, fatigue resistance and corrosion resistance of steels. To reduce the disadvantageous effects of inclusions on the properties of steels, updating and optimizing the smelting methods are the prerequisite. With the application of bubble removal technology, vacuum carbon deoxidation technology, and tundish electromagnetic stirring technology in the smelting process, the contents of inclusions in steels have been significantly reduced. However, in the current industrialized environment, it is still impossible to eliminate non-metallic inclusions completely in steels. Some research results have shown that hot rolling and heat treatment processes also have an important influence on the evolution of inclusions, which is of great significance to further control the size, distribution and morphology of the inclusions after smelting. Therefore, in addition to the development of new smelting processes to reduce the content of inclusions, Clarifying the effects of hot processing on the evolution of inclusions is another important research direction. In this paper, the advanced inclusion control technologies and their principles in the smelting process are summarized first. The effects of thermomechanical processing and heat treatment on the number, size, distribution, morphology, and types of inclusions are then reviewed carefully.
Key words:  steels    sulfide inclusions    oxide inclusions    smelting    thermomechanical processing    heat treatment
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  TG142.1  
基金资助: 南京钢铁股份有限公司资金支持项目;黑龙江省自然科学基金(JC2017012;LH2019E030)
作者简介:  郑浩,2018年6月在山东科技大学获得工学学士学位。现为哈尔滨工程大学材料科学与化学工程学院硕士研究生,在张中武老师的指导下进行研究。主要研究领域为热加工对富铜纳米相强化钢中夹杂物的影响
张中武,博士 哈尔滨工程大学教授,博士研究生导师,黑龙江省“龙江学者”讲座教授,黑龙江省杰出青年科学基金获得者,哈尔滨工程大学金属材料研究所所长。2013年6月加入哈尔滨工程大学材料科学与化学工程学院。长期从事纳米相强化钢、纳米相和层错能调控合金设计及其在舰船和核能领域的应用等研究。发表SCI论文80多篇,获授权专利24项,多次受邀出席国内外会议并发表演讲。获省部级一、二、三等奖各一项(均排名第一)。
引用本文:    
郑浩, 刘丽华, 张中武. 热加工对硫化物及氧化物夹杂的影响[J]. 材料导报, 2021, 35(13): 13168-13176.
ZHENG Hao, LIU Lihua, ZHANG Zhongwu. Effects of Hot Processing on Sulfide and Oxide Inclusions. Materials Reports, 2021, 35(13): 13168-13176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020105  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13168
1 Tervo H, Kaijalainen A, Pikkarainen T, et al. Materials Science and Engineering,2017,697,184.
2 Li X Y, Shi J, Dong H. Heat Treatment Technology of Materials,2012,41(18),59(in Chinese).
李晓源,时捷,董瀚.材料热处理技术,2012,41(18),59.
3 Yang W, Yang X G, Zhang L F, et al. Steelmaking,2013,29(6),71(in Chinese).
杨文,杨小刚,张立峰,等.炼钢,2013,29(6),71.
4 Liu J H, Liu H B. Henan Metallurgy,2015,6(3),1(in Chinese).
刘建华,刘洪波.河南冶金,2015,6(3),1.
5 Ward R G. An introduction to the physical chemistry of iron and steel ma-king, Martin’s Press, New York, USA,1962.
6 Hino M,Ito K. Thermodynamic data for steelmaking, Tohoku University Press, Japan,2010.
7 Kang Y, Thunman M, Sichen D, et al. ISIJ International,2009,49(10),1483.
8 Costa e Silva A, Beneduce F, Avillez R R. Tecnologia em Metallurgia Materiais e Minerao,2015,12(4),267.
9 Paek M K, Do K H, Kang Y B, et al. In: Proceeding of Clean Steel in Future-Prof Hae-Geon Lee Symposium. Pohang, Korea,2012.
10 Silva C E, A. Revue de Métallurgie,2008,105(4),181.
11 Kang Y B, Kim H S, Zhang J, et al. Journal of the Physics and Chemistry of Solids,2005,66(2-4),219.
12 Jung I H, Decterov S A, Pelton A D. Metallurgical and Materials Tran-sactions B,2004,35(3),493.
13 Jung I H. CALPHAD-Computer Coupling of Phase Diagrams and Thermochemistry,2010,34(3),332.
14 Costa S A. Rare Metals,2006,25(5),412.
15 Costa S A. Journal of Phase Equilibria and Diffusion,2017,38(6),916.
16 Wu K X, Fu C, Zheng Y. Steelmaking,2010,26(4),8(in Chinese).
吴康夏,富春,郑毅.炼钢,2010,26(4),8.
17 Li N, Wang L, Xue Z L, et al. Results in Physics,2020,16,1.
18 Ren Y, Zhang L F, Fang W, et al. Metallurgical and Materials Transactions B,2016,47(2),1024.
19 Yu Z, Liu C J. Metals,2019,9(7),1.
20 Yang C Y, Luan Y K, Li D Z, et al. Journal of Materials Science & Technology,2019,7,1298.
21 Liu Y Q, Wang L J, Chou K C, et al. Journal of Rare Earths,2014,32(8),759.
22 Li H, Yu Y C, Ren X, et al. Journal of Iron and Steel Research, International,2017,24(9),925.
23 Ma Q, Wu C, Cheng G, et al. Materials Today,2015,2,S300.
24 Huang J, Min Y, Jiang M F, et al. Dongbei Daxue Xuebao/Journal of Northeastern University,2013,34(3),368.
25 Tabatabaei Y, Coley K S, Irons G A, et al. Steel Research International,2019,90(10),1900155.
26 Bao Y P, Liu J H, Xu B M. Journal of University and Technology Beijing,2003,10(4),20.
27 Li K W, Liu J H, Zhou J B, et al. Journal of University of Science and Technology Beijing,2015,37(9),1124(in Chinese).
李康伟,刘建华,周剑波,等.北京科技大学学报,2015,37(9),1124.
28 Wang L, Lee H, Hayes P. ISIJ International,1996,36(1),17.
29 Turkdogan E T. Ironmaking & Steeling,2004,31(2),131.
30 Tang F P, Li Z, Wang X F, et al. Steel,2010,45(8),28.
唐复平,李镇,王晓峰,等.钢铁,2010,45(8),28.
31 Beskow K, Ladle G. Ironmaking and Steelmaking,2004,5(31),393.
32 Beskow K, Tripathi N N, Nzotta M. Molten Slags Fluxes and Salts,2004,6(31),320.
33 Tsunehiro U, Akihiko O, Mitsuru S. E.U. patent, EP84301814,1988.
34 Mao B, Tao J M, Sun L J. Continuous Casting,2008(2),8(in Chinese).
毛斌,陶金明,孙丽娟.连铸,2008(2),8.
35 Cui H, Bao Y P, Liu J H. Steelmaking,2010,26(2),45(in Chinese).
崔衡,包燕平,刘建华.炼钢,2010,26(2),45.
36 Zhang L F, Wang X H. Shandong Metallurgy,2005,27(2),1(in Chinese).
张立峰,王新华.山东冶金,2005,27(2),1.
37 Zhan D P, Zhang H S, Jiang Z H, et al. Foundry Technology,2007,28(1),110(in Chinese).
战东平,张慧书,姜周华,等.铸造技术,2007,28(1),110.
38 Asano K, Nakano T. Journal of the Iron and Steel Institute of Japan,1971,57(13),1943.
39 Braun T B, Elliott J F, Flemings M C. Metallurgical Transactions B:Process Metallurgy,1979,10(2),171.
40 You D L, Susanne K M, Peter P, et al. Metals,2017,7(11),460.
41 Gupta A, Cecen A, Goyal S, et al. Acta Materialia,2015,91,239.
42 Bartosiaki B G, Pereira J A M, Bielefeldt W V, et al. Journal of Mate-rials Research and Technology,2015,4(3),235.
43 Susumu I, Koichiro O, Rie S, et al. Materials Characterization,2017,131,210.
44 Fujita S, Murakami Y. Metallurgical and Materials Transactions A,2013,44(1),303.
45 Jacques Poirier. Metallurgical Research & Technology,2015,112(410),1.
46 Costa S A. Journal of Materials Research and Technology,2018,7(3),283.
47 Deng X, Ji C, Cui Y, et al. Ironmaking and Steelmaking,2017,44(10),739.
48 Yin H B, Shibata H, Emi T, et al. ISIJ International,1997,37(10),936.
49 Yin H B, Shibata H, Emi T, et al. ISIJ International,1997,37(10),946.
50 Luo C H. Computational Materials Science,2001,21(3),360.
51 Fuhr F, Torga G, Medina F, et al. Ironmaking and Steelmaking,2007,34(6),463.
52 Kang Y, Mikael T, Du S C, et al. ISIJ International,2009,49(10),1483.
53 Luo C H, Stahlberg U. Scandinavian Journal of Metallurgy,2002,31(3),184.
54 Song M, Nzotta M, Sichen D. Ironmaking and Steelmaking,2011,38(8),584.
55 Malkiewicz T, Rudnik S. Journal of the Iron and Steel Institute of Japan,1963,201(1),33.
56 Kiessling R. Journal of Metals,1969,21(10),48.
57 Lou D C, Cui K, Wu X C, et al. Foundry Technology,1996,8(6),11(in Chinese).
娄德春,崔昆,吴晓春,等.钢铁研究学报,1996,8(6),11.
58 Lou D C, Cui K, Wu X C. Iron and Steel Research,1996(5),26(in Chinese).
娄德春,崔昆,吴晓春.钢铁研究,1996(5),26.
59 Huang F Y, Su Y H F, Kuo J C. Metals and Materials International,2018,24,1333.
60 Shao X J, Lv L G, Du Q, et al.Heat Treatment of Metals,2018,43(5),144(in Chinese).
邵肖静,吕利鸽,杜倩,等.金属热处理,2018,43(5),144.
61 Gove K B, Charles J A. Metals Technology,1974,1(1),425.
62 Jian L, Chen W Q, Meng J X, et al.Steel,2006,41(10),74(in Chinese).
简龙,陈伟庆,孟金霞,等.钢铁,2006,41(10),74.
63 Wikstrm J, Nakajima K, Shibata H, et al. Materials Science and Engineering A,2008,495(1-2),316.
64 Vodopivec F, Gabrovek M. Metals Technology,1980,7(1),186.
65 Bernard G, Riboud P V, Urbain G. Metallurgical Research & Technology,1981,78(5),421
66 Yang W, Guo C B, Zhang L F, et al. Metallurgical and Materials Tran-sactions B,2017,48,2717.
67 Zhang L F, Guo C B, Yang W, et al. Metallurgical and Materials Transactions B,2018,49,803.
68 Luo C H, Stahlberg U. Journal of Materials Processing Technology,2001,114(1),87.
69 Xiao G H, Dong H, Wang M Q, et al. Journal of University of Science and Technology Beijing,2010,32(6),735(in Chinese).
肖国华,董瀚,王毛球,等.北京科技大学学报,2010,32(6),735.
70 Nozomi M, Motoki T, Takahiro I, et al. Procedia Engineering,2014,81,120.
71 Pickering F B. British Corrosion Journal,1978,13(2),55.
72 Ototani T, Kataura Y. Transactions of the Iron and Steel Institute of Japan,1972,12(5),334.
73 Zhang L, Guo C, Yang W, et al. Metallurgical and Materials Transactions B,2017,48(5),2267.
74 Matsuoka N, Terano M, Ishiguro T, et al. Procedia Engineering,2014,81,120.
75 Faraji M, Wilcox D P, Thackray R P, et al. Materials Science and Technology,2014,30(10),1177.
76 Li B, Chen W Q, Zheng H G, et al. Heat Treatment of Metals,2017,42(1),144.
李兵,陈伟庆,郑宏光,等.金属热处理,2017,42(1),144.
77 Fu C T, Xia Y J, Wang S J. Journal of Materials Heat Treatment,2015,36(1),117.
伏存田,夏云进,王世俊.材料热处理学报,2015,36(1),117.
78 Shao X J, Wang X H, Jiang M, et al. ISIJ International,2011,51(21),1995.
79 Choi W, Matsuura H, Tsukihashi F. ISIJ International,2011,51(21),1951.
80 Liu C S. Solid-phase reaction mechanism of inclusions and steel matrix interface in 1473K heat treatment process. Ph.D. Thesis,University of Science and Technology Beijing, China,2015(in Chinese).
刘成松.1473K热处理过程夹杂物与钢基体界面固相反应机理.博士学位论文,北京科技大学,2015.
81 Chen W B, Ren Y, Xu H K, et al. Steel,2018,53(10),38(in Chinese).
陈为本,任英,徐海坤,等.钢铁,2018,53(10),38.
82 Shibata H, Tanaka T, Kimura K, et al. Ironmaking & Steelmaking,2013,37(7),522.
83 Shibata H, Tanaka T, Kimura K, et al. ISIJ International,2011,51(12),1944.
84 Liu C S, Kim K H, Kim S J, et al. Metallurgical and Materials Transactions B,2015,46(4),1875.
85 Liu C S, Yang S F, Kim K H, et al. International Journal of Minerals, Metallurgy, and Materials,2015,22(8),811.
86 Liu C, Li J, Tang H, et al. EPD congress 2015, John Wiley & Sons, Inc. 2015.
87 Zhang X L, Yang S F, Liu C S, et al. Journal of Iron and Steel Research,2018,25(1),1.
88 Zhang X L, Yang S F, Li J S, et al. High Temperature Materials and Processes,2018,38,347.
89 Wang J J, Li W F, Ren Y, et al. Steel Research International,2019,90(7),1800600.
90 Ren Y, Zhang L, Pistorius P C. Metallurgical and Materials Transactions B,2017,48,1.
91 Liu C S, Liu X Q, Ni H W, et al. Journal of Iron and Steel Research International,2017,24(5),520.
92 Liu C S, Liu X Q, Yang S F, et al. Metals,2017,7(6),1.
93 Zhang X L, Yang S F, Li J S, et al. Metals,2019,9(9),1.
94 Zhang X L, Yang S F, Li J S, et al. Steel,2018,53(5),32(in Chinese).
张雪良,杨树峰,李京社,等.钢铁,2018,53(5),32.
95 Wang M, Wang X H, Yu H X, et al. Journal of Iron and Steel Research International,2011,18(S2),377.
96 Wang Q, Zou X, Matsuura H, et al. JOM,2018,70(4),521.
97 Chu Y P, Li W F, Ren Y, et al. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2019,50(4),2047.
98 Qi J H, Yang C W, Zhu W J, et al. Steel,2013,48(11),79(in Chinese).
齐江华,杨成威,朱万军,等.钢铁,2013,48(11),79.
99 Yan Z L, Zhang J M, Liu Z M, et al. Acta Metallurgica Sinica,2011,24(4),326.
[1] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[2] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[3] 丁凤娟, 贾向东, 洪腾蛟, 徐幼林, 胡喆. 不同热处理工艺对6061铝合金塑性和硬度的影响[J]. 材料导报, 2021, 35(8): 8108-8115.
[4] 石玉, 李正宁, 盛捷, 喇培清. 纳米高强钢铁材料增塑研究进展[J]. 材料导报, 2021, 35(7): 7155-7161.
[5] 陈文静, 胡平, 邢海瑞, 夏雨, 李世磊, 左烨盖, 王快社, 冯鹏发, 常恬, 李来平. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151.
[6] 杨立军, 郑航, 李俊, 隋泽卉. 热处理对激光选区熔化成型316L合金综合性能的影响[J]. 材料导报, 2021, 35(12): 12103-12109.
[7] 张荣华, 杨川, 石宁, 关远远, 马劲红, 张源, 陈连生. 高氮奥氏体钢的塑性加工变形特性研究进展[J]. 材料导报, 2021, 35(11): 11154-11162.
[8] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[9] 尹畅畅, 余登德, 陈家林, 闻明, 管伟明, 谭志龙. NiPt15合金热变形行为及微观组织演变规律[J]. 材料导报, 2021, 35(10): 10120-10126.
[10] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[11] 许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
[12] 韩丽青, 吴云胜, 刘状, 秦学智, 王常帅, 周兰章, 于宏, 陈亚军. 一种先进超超临界火电机组用Ni-Fe-Cr基高温合金的热变形行为[J]. 材料导报, 2020, 34(6): 6109-6113.
[13] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[14] 张国忠,李艳辉,吴立成,张伟. Fe基纳米晶软磁合金退火脆性的研究进展[J]. 材料导报, 2020, 34(3): 3165-3171.
[15] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed