Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 21030094-10    https://doi.org/10.11896/cldb.21030094
  无机非金属及其复合材料 |
铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展
宋牙牙1,2, 黄艳斐2, 郭伟玲2, 邢志国2, 王海斗2, 吕振林1, 张执南3
1 西安理工大学材料科学与工程学院,西安 710048
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 上海交通大学机械与动力工程学院,上海 200240
Research Progress of Doping Modification of Potassium Sodium Niobate-based Lead-free Piezoelectric Ceramics
SONG Yaya1,2, HUANG Yanfei2, GUO Weiling2, XING Zhiguo2, WANG Haidou2, LV Zhenlin1, ZHANG Zhinan3
1 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
2 National Key Laboratory for Remanufacturing, Army Armored Force Institute, Beijing 100072, China
3 School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 8786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电陶瓷材料因具有优异的机电转换特性而被广泛应用,主要分为铅基压电陶瓷和无铅基压电陶瓷。然而,铅基压电陶瓷因含有高浓度的重金属铅而对环境损害极大,目前世界各国均已立法限制其应用。因此,环境友好型的无铅压电陶瓷成为学者的研究重点。其中,铌酸钾钠(KNN)基陶瓷因含有较大的压电系数、较高的居里温度,且通过适当的成分设计和晶体相位调整,在多晶型相界处可获得最佳电学性能,有的甚至可与锆钛酸铅(PZT)相媲美,从而备受人们的青睐。但对于在多晶型相界处可获得最佳电学性能的物理机理并未明确,同时多晶型相界不易调控以及KNN基陶瓷自身K、Na元素易挥发,对其电学性能产生了严重影响。
本文以离子取代、添加新组元和添加烧结助剂为切入点,论述KNN基陶瓷的掺杂机理和烧结特性,讨论A位掺杂、B位掺杂以及A、B位共掺对KNN陶瓷晶体结构的影响,重点论述三方相-正交相(R-O)、正交相-四方相(O-T)或三方相-四方相(R-T)共存与高压电性的物理机制,总结KNN基无铅压电陶瓷的发展。其中,在离子取代基础上添加新组元化合物,更加有利于构建多相共存的微观相结构;同时,开发的烧结助剂可有效地解决KNN基陶瓷烧结性能较差的问题。综上可知,KNN基无铅压电陶瓷在取代PZT基压电陶瓷材料方面具有极大潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋牙牙
黄艳斐
郭伟玲
邢志国
王海斗
吕振林
张执南
关键词:  铌酸钾钠  压电陶瓷  钙钛矿  多晶型相界  纳米铁电畴  烧结助剂    
Abstract: Piezoelectric ceramic materials are widely used due to their excellent electromechanical conversion characteristics. They are mainly divided into lead-based and lead-free piezoelectric ceramics. However, high lead concentration is extremely harmful to the environment, and international legislation has prohibited the application of lead-based piezoelectric ceramics. Therefore, environmentally friendly lead-free piezoelectric ceramics have become the research focus. Potassium sodium niobate (KNN)-based lead-free ceramics are favored because of their large piezoelectric coefficient and high Curie temperature. KNN-based ceramics with appropriate composition and crystal phase adjustment can achieve the best electrical properties at the polycrystalline phase boundary, and some are even comparable to PZT. However, difficulty in controlling the polycrystalline phase boundary and the volatile nature of K and Na in KNN-based ceramics have seriously affected their electrical properties. In addition, the fundamental reasons behind the optimum electrical properties at the polycrystalline phase boundary remain undiscovered.
Taking ion substitution, adding new components and adding sintering additives as the starting point, this article discusses the doping mechanism and sintering characteristics of KNN-based ceramics in detail. It also discusses the effects of A-site doping, B-site doping, and A and B-site co-doping on the crystal structure of KNN-based ceramics with a focus on the physical mechanism of the coexistence of R-O, O-T, or R-T phases and high piezoelectric properties, and summarizes prospects and developments in KNN-based piezoelectric ceramics. The results show that adding a new component based on ion substitution is more conducive to constructing a multiphase coexistence microstructure. And the deve-loped sintering aid can effectively improve the poor sintering performance of KNN-based ceramics. Based on the results, it is established that KNN-based piezoelectric ceramics have great potential in replacing lead-based piezoelectric ceramics.
Key words:  potassium sodium niobate    piezoelectric ceramics    perovskite    polycrystalline phase boundary    nanometer ferroelectric domain    sintering aid
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TB381  
基金资助: 国家自然科学基金面上项目(51775554);国家自然科学基金重点项目(51535011)
通讯作者:  huangyanfei123@126.com; xingzg2011@163.com   
作者简介:  宋牙牙,2019年毕业于景德镇陶瓷大学,获得工学学士学位。现为西安理工大学材料科学与工程学院硕士研究生,在邢志国助理研究员的指导下进行研究。目前主要研究领域为铌酸钾钠基无铅压电陶瓷涂层。
邢志国,再制造技术国家重点实验室助理研究员,2010年7月在西安理工大学材料学系取得博士学位,主要从事摩擦学与再制造寿命评估方向的教学和科研工作。获北京市自然科学二等奖1项,授权各类专利30项,共发表学术论文60余篇,其中以第一作者和通信作者发表45篇,被SCI检索38篇、EI检索13篇。
黄艳斐,再制造技术国家重点实验室助理研究员。2011年7月在北京航空航天大学取得硕士学位。从事表面工程与再制造工程方面的教学和科研工作,发表论文20余篇;主编著作1部,参编著作2部;授权国家发明专利2项。
引用本文:    
宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
SONG Yaya, HUANG Yanfei, GUO Weiling, XING Zhiguo, WANG Haidou, LV Zhenlin, ZHANG Zhinan. Research Progress of Doping Modification of Potassium Sodium Niobate-based Lead-free Piezoelectric Ceramics. Materials Reports, 2022, 36(5): 21030094-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030094  或          http://www.mater-rep.com/CN/Y2022/V36/I5/21030094
1 Hao J, Li W, Zhai J, et al. Materials Science and Engineering R: Reports, 2019, 135, 1.
2 Saito Y, Takao H, Tani T, et al. Nature, 2004, 432(7013), 84.
3 Wang R, Bando H, Kidate M, et al. Japanese Journal of Applied Phy-sics, 2011, 50(9S2), 09ND10.
4 Wu W, Xiao D, Ma J, et al. Ceramics International, 2014, 40(1), 1133.
5 Zhao Y, Liu J, Zhang X, et al. Journal of Alloys and Compounds, 2018, 763, 695.
6 Zhao R, Li Y, Zheng Z, et al. Materials Chemistry and Physics, 2020, 245, 122806.
7 Fu Z, Yang J, Lu P, et al. Ceramics International, 2017, 43(15), 12893.
8 Yan K, Wang F, Chen X, et al. Ceramics International,2019,45(16),20323.
9 Hussain F, Khesro A, Muhammad R, et al. Materials Research Express, 2019, 6(10), 106309.
10 Ramajo L, Taub J, Castro M S, et al. Journal of Materials Science:Materials in Electronics, 2014, 25(1), 168.
11 Wang X, Wu J, Cheng X, et al. Ceramics International, 2013, 39(7), 8021.
12 Wu J, Tao H, Yuan Y, et al. RSC Advances, 2015, 5(19), 14575.
13 Yang S Y, Wei R T, Wu S Y,et al. Journal of the Chinese Ceramic Society, 2020, 48(4), 520(in Chinese).
杨绳岩, 魏瑞亭, 吴圣扬, 等. 硅酸盐学报, 2020, 48(4), 520.
14 Liao Y, Wang D, Wang H, et al. Ceramics International, 2019, 45(10), 13179.
15 Carreño-Jiménez B, Villafuerte-Castrejón M E, Reyes-Montero A, et al. Boletín de la Sociedad Española de Cerámica y Vidrio, 2021, 60(4), 266.
16 Mensur-Alkoy E, Berksoy-Yavuz A, Alkoy S. Ferroelectrics, 2013, 447(1), 95.
17 Fuentes J, Portelles J, Durruthy-Rodriguez M D, et al. Applied Physics A, 2015, 118(2), 709.
18 Montero-Tavera C, Durruthy-Rodríguez M D, Cortés-Vega F D, et al. Journal of Advanced Ceramics, 2020, 9(3), 1.
19 Duong T A, Erkinov F, Aripova M, et al. Ceramics International, 2021, 47(4), 4925.
20 Zhou J J, Wang K, Li F, et al. Journal of the American Ceramic Society, 2013, 96(2), 519.
21 Li H T, Li R, Wang G X, et al. Journal of the Chinese Ceramic Society, 2020, 48(9), 1396(in Chinese).
李海涛, 李冉, 王广欣, 等. 硅酸盐学报, 2020, 48(9), 1396.
22 Izzuddin I, Jumal M H H, Zainuddin Z, et al. Ceramics International, 2019, 45(14), 17204.
23 Li C, Xu X, Gao Q, et al. Ceramics International, 2019, 45(8), 11092.
24 Zhang B, Wang X, Cheng X, et al. Journal of Alloys and Compounds, 2013, 581, 446.
25 Sun X. Study on the composition and physical properties of potassium sodium niobate-based piezoelectric ceramics. Master's Thesis, Shandong University, China, 2019(in Chinese).
孙雪. 铌酸钾钠基压电陶瓷的组分与物性的研究. 硕士学位论文, 山东大学,2019.
26 Tian A F, Wang Q Q, Hui X, et al. Xi'an University of Science and Technology Journal, 2019, 39(4), 708(in Chinese).
田爱芬, 王茜茜, 惠璇. 等. 西安科技大学学报, 2019, 39(4), 708.
27 Yang W, Wang Y, Li P, et al. Journal of Materials Chemistry C, 2020, 8(18), 6149.
28 Zhou T. The influence of component introduction and doping modification on the properties of KNN-based lead-free piezoelectric ceramics. Master's Thesis, Guizhou University, China, 2018(in Chinese).
周涛. 组元引入及掺杂改性对KNN基无铅压电陶瓷性能的影响. 硕士学位论文, 贵州大学, 2018.
29 Tangsritrakul J, Tang C C, Day S J, et al. Journal of the European Ceramic Society, 2020, 40(3), 672.
30 Qin Y, Zhang J, Yao W, et al. ACS Applied Materials & Interfaces, 2016, 8(11), 7257.
31 Xie L, Xing J, Tan Z, et al. Journal of Alloys and Compounds, 2018, 758, 14.
32 Shi C, Ma J, Wu J, et al. Journal of Alloys and Compounds, 2020, 846, 156245.
33 Tan L, Sun Q, Wang Y, et al. Journal of Alloys and Compounds, 2020, 836, 155419.
34 Wang Y, Zhu W, Sun Q, et al. Journal of Alloys and Compounds, 2019, 787, 407.
35 Jiang M, Liu X, Chen G. Scripta Materialia, 2009, 60(10), 909.
36 Jiang M H, Deng M J, Lu H X, et al. Materials Science and Enginee-ring: B, 2011, 176(2), 167.
37 Shi C, Ma J, Wu J, et al. Ceramics International, 2020, 46(3), 2798.
38 Lee M K, Yang S A, Park J J, et al. Scientific Reports, 2019, 9(1), 1.
39 Li P, Fu Z, Wang F, et al. Acta Materialia, 2020, 199, 542.
40 Dittmer R, Jo W, Roedel J, et al. Advanced Functional Materials, 2012, 22(20), 4208.
41 Fu J, Zuo R, Xu Z. Applied Physics Letters, 2011, 99(6), 062901.
42 Zhang B, Wu J, Cheng X, et al. ACS Applied Materials & Interfaces, 2013, 5(16), 7718.
43 Xu K, Li J, Lv X, et al. Advanced Materials, 2016, 28(38), 8519.
44 Mgbemere H E, Herber R P, Schneider G A, et al. Journal of the European Ceramic Society, 2009, 29(9), 1729.
45 Li X, Xiao D Q, Wu L, et al. Functional Materials, 2009, 40(3), 387(in Chinese).
李香, 肖定全, 吴浪, 等. 功能材料, 2009, 40(3), 387.
46 Jo W, Ollagnier J B, Park J L, et al. Journal of the European Ceramic Society, 2011, 31(12), 2107.
47 Lin D, Kwok K W, Chan H L W, et al. Journal of Alloys and Compounds, 2008, 461(1-2), 273.
48 Yin Q, Yuan S, Dong Q, et al. Journal of Alloys and Compounds, 2010, 491(1-2), 340.
49 Li X J, Hui Z Z, Long W, et al. Journal of Synthetic Crystals, 2012, 41(5), 7(in Chinese).
李晓娟, 惠增哲, 龙伟, 等. 人工晶体学报, 2012, 41(5), 7.
50 Hayati R, Barzegar A. Materials Science and Engineering B, 2010, 172(2), 121.
51 Li Y M, Liu H, Shen Z Y, et al. Chinese Ceramics, 2011, 47(10), 28(in Chinese).
李月明, 刘虎, 沈宗洋, 等. 中国陶瓷, 2011, 47(10), 28.
52 Li X Y, Huang X Y, Deng Y H, et al. Electronic Components and Materials, 2011, 30(3), 18(in Chinese).
李晓毅, 黄新友, 邓悦欢, 等. 电子元件与材料, 2011, 30(3), 18.
53 Gao D, Kwok K W, Lin D, et al. Journal of Materials Science, 2009, 44(10), 2466.
54 Wu W, Chen M, Li J, et al. Journal of Alloys and Compounds, 2016, 670, 128.
55 Su S, Zuo R, Wang X, et al. Materials Research Bulletin, 2010, 45(2), 124.
56 Huang R, Zhao Y, Yan D, et al. Ceramics International, 2019, 45(1), 1450.
57 Matsubara M, Yamaguchi T, Kikuta K, et al. Japanese Journal of Applied Physics, 2004, 43(10R), 7159.
58 Matsubara M, Kikuta K, Hirano S, et al. Journal of Applied Physics, 2005, 97(11), 114105.
59 Chen Y, Jiang X P, Tu N, et al. Journal of Synthetic Crystals, 2009, 38(5), 1098(in Chinese).
陈燕, 江向平, 涂娜, 等.人工晶体学报, 2009, 38(5), 1098.
60 Lin D, Guo M S, Lam K H, et al. Smart Materials and Structures, 2008, 17(3), 035002.
61 Han H S, Koruza J, Patterson E A, et al. Journal of the European Ceramic Society, 2017, 37(5), 2083.
62 Zhang Q, Xu F, Yang R, et al. Ceramics International, 2017, 43(2), 2537.
63 Akca E, Yılmaz H. Ceramics International, 2015, 41(3), 3659.
64 Zhou J J, Cheng L Q, Wang K, et al. Journal of the European Ceramic Society, 2014, 34(5), 1161.
[1] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[2] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[3] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[4] 唐明响, 陈良, 祁核, 孙胜东, 刘辉, 陈骏. 缺陷偶极子调控铅基钙钛矿压电陶瓷性能的研究进展[J]. 材料导报, 2022, 36(2): 20090329-6.
[5] 汪丰麟, 张为军, 毛海军, 白书欣. 温度稳定型BaTiO3基复合钙钛矿型介质材料研究进展[J]. 材料导报, 2022, 36(1): 20100126-12.
[6] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[7] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[8] 曾鹂, 彭同江, 孙红娟, 李瑶, 杨敬杰. Mn掺杂LaNi1-xMnxO3的合成及在可见光下的光催化活性[J]. 材料导报, 2021, 35(24): 24018-24025.
[9] 刘璋, 陈新亮, 侯国付, 李跃龙, 丁毅, 赵颖, 张晓丹. 高效钙钛矿太阳电池及其叠层电池研究进展[J]. 材料导报, 2021, 35(15): 15031-15046.
[10] 刘壮, 陈建林, 黄才友, 彭卓寅, 何建军, 陈荐. 全无机CsPbBr3钙钛矿太阳电池的研究进展[J]. 材料导报, 2021, 35(11): 11039-11056.
[11] 杨志春, 吴狄, 剡晓波, 蒋昭毅, 刘宗豪, 陈炜. 大面积钙钛矿薄膜制备技术的研究进展[J]. 材料导报, 2021, 35(1): 1046-1057.
[12] 付振东, 赵健, 戴叶婧, 梁骥, 刘荣正. 碳化硅陶瓷烧结助剂的作用机制与研究进展[J]. 材料导报, 2021, 35(1): 1077-1081.
[13] 栾福园, 杨松旺, 吴子华, 谢华清. 钙钛矿太阳能电池的环境友好化研究进展[J]. 材料导报, 2020, 34(Z2): 11-16.
[14] 刘侠妤. 卤化铅钙钛矿量子点太阳能电池的进展与展望[J]. 材料导报, 2020, 34(Z2): 17-18.
[15] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed