Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22050326-9    https://doi.org/10.11896/cldb.22050326
  高分子与聚合物基复合材料 |
氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究
王娅鸽1, 王彬彬2, 杨德威3, 李瑶1,*
1 河南理工大学安全科学与工程学院,河南 焦作 454003
2 河南理工大学材料科学与工程学院,河南 焦作 454003
3 河南佰利新能源材料有限公司,河南 焦作 454000
Nitrogen-doped Flexible Bulk Porous Carbon: Preparation and Application for CO2/CH4 Adsorption and Separation
WANG Yage1, WANG Binbin2, YANG Dewei3, LI Yao1,*
1 College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
2 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
3 Henan Baili New Energy Material Co., Ltd., Jiaozuo 454000, Henan, China
下载:  全 文 ( PDF ) ( 16980KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为开发一种用于CO2/CH4吸附和分离的经济、高效、工艺简单的块体多孔碳材料,选取三聚氰胺海绵块为前驱体物质,将其用作块体碳的支撑骨架,同时也作为氮源,引入葡萄糖作为二次碳源,以CO2气体作为活化剂,经一步碳化-活化制备氮掺杂柔性块体多孔碳,并探讨葡萄糖负载量、活化温度及活化时间对多孔碳孔隙结构形成和化学成分的影响。测试结果表明:葡萄糖负载量为0.5 g、活化温度为800 ℃、活化时间为3 h时,所制备的样品有最大的比表面积(845 m2/g)、最高的总孔体积(0.37 cm3/g)以及最发达的微孔结构,其微孔体积高达0.30 cm3/g,占总孔体积的81%,超微孔体积高达0.26 cm3/g,占总孔体积的百分比高达70%。在25 ℃、0.1 MPa压力下,AMC-800-3展现出最优的CO2吸附容量,可达2.84 mmol/g;根据亨利定律,利用低压(<0.015 MPa)下的吸附等温线起始斜率计算得出AMC-800-3对CO2/CH4的固有选择性系数为2.70,仅次于未活化样品;根据理想溶液吸附理论(IAST),在0.1 MPa压力下,AMC-800-3对二元混合气体CO2/CH4(50V/50V)的分离选择性系数为2.35,这主要归因于该样品所具有的优异的微孔结构和一定量氮的协同作用;通过动态穿透实验进一步测试了AMC-800-3对二元混合气体CO2/CH4(50V/50V)的选择性,结果与IAST计算相接近。本工作所制备的氮掺杂柔性块体多孔碳在减少碳排放、提高煤层气利用率等方面具有良好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王娅鸽
王彬彬
杨德威
李瑶
关键词:  氮掺杂  柔性  块体多孔碳  CO2/CH4吸附分离    
Abstract: To develop an economical, efficient and simple prepared bulk porous carbon material for the adsorption and separation of CO2/CH4, melamine sponge was selected as both the precursor material for the support framework of bulk porous carbon and the nitrogen source. Glucose was introduced as a secondary carbon source, and CO2 was used as an active agent to prepare nitrogen-doped flexible bulk porous carbon through one-step carbonization-activation method. The effects of glucose loading, activation temperature, and activation time on the porosity and chemical composition were discussed. The results indicated that at the glucose loading was 0.5 g, the activation temperature was 800 ℃, and the activation time was 3 h, the sample AMC-800-3 exhibited the largest specific surface area of 845 m2/g, the highest total volume of 0.37 cm3/g, and the most developed microporous structure. The micropore volume was up to 0.30 cm3/g, accounting for 81% of the total pore volume, and ultra-micropore volume was up to 0.26 cm3/g, accounting for 70% of the total pore volume. At 25 ℃ and 0.1 MPa, AMC-800-3 exhibited the highest CO2 adsorption capacity of 2.84 mmol/g. According to Henry's law, the intrinsic selectivity of AMC-800-3 for CO2/CH4 calculated via the initial slope of the adsorption isotherm at low pressure (<0.015 MPa), was 2.70, which was the best of all the activated samples. According to ideal adsorption solution theory (IAST), the selectivity of AMC-800-3 for the equimolar binary mixture CO2/CH4 (50V/50V) was 2.35 at 0.1 MPa, which is attributed to the synergistic effect of the excellent microporous structure and a certain amount of nitrogen content. Under further dynamic breakthrough experiments, the dynamic selectivity result of AMC-800-3 for CO2/CH4 (50V/50V) was close to that calculated by IAST. Therefore, the as-prepared flexible nitrogen-doped bulk porous carbon is expected to be applicable for reducing carbon emissions and improving the utilization rate of coalbed methane.
Key words:  nitrogen-doped    flexible    bulk porous carbon    CO2/CH4 adsorptive separation
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TE991  
基金资助: 国家自然科学基金(42002164;U1804156);河南省自然科学基金(202300410171)
通讯作者:  * 李瑶,河南理工大学讲师、硕士研究生导师。2005年毕业于沈阳师范大学获得学士学位,2008年毕业于东北师范大学获得硕士学位,2016年毕业于北京理工大学获得博士学位。主要从事多孔碳的设计、合成及煤层气的吸附分离研究。在国际期刊Carbon、Energy、Journal of Environmental Chemical Engineering等发表论文10余篇,出版专著1部,申请发明专利3项(授权2项)。leayao35@hpu.edu.cn   
作者简介:  王娅鸽,2020年毕业于河南理工大学获得学士学位,河南理工大学安全科学与工程学院硕士研究生,主要研究方向为块体多孔碳的制备及CO2/CH4吸附分离。
引用本文:    
王娅鸽, 王彬彬, 杨德威, 李瑶. 氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究[J]. 材料导报, 2023, 37(22): 22050326-9.
WANG Yage, WANG Binbin, YANG Dewei, LI Yao. Nitrogen-doped Flexible Bulk Porous Carbon: Preparation and Application for CO2/CH4 Adsorption and Separation. Materials Reports, 2023, 37(22): 22050326-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050326  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22050326
1 Zhang X M, Zhao J Z, Zhang P H, et al. Coal Geology & Exploration, 2007, 35(4), 23 (in Chinese).
张新民, 赵靖舟, 张培河, 等. 煤田地质与勘探, 2007, 35(4), 23.
2 Bai Y. China Petroleum Enterprise, 2019(12), 64 (in Chinese).
白桦. 中国石油企业, 2019(12), 64.
3 Liu N, Wei J P, Li Y. Journal of Henan Polytechnic University (Natural Science), 2021, 40(1), 1 (in Chinese).
刘楠, 魏建平, 李瑶. 河南理工大学学报 (自然科学版), 2021, 40(1), 1.
4 Feng M, Chen L, Xu C K, et al. Resources Science, 2007, 29(3), 100 (in Chinese).
冯明, 陈力, 徐承科, 等. 资源科学, 2007, 29(3), 100.
5 Gao H X, Zhou L P, Luo X, et al. International Journal of Greenhouse Gas Control, 2018, 79, 83.
6 Chen H W. Modern SOE Research, 2018, 144(18), 178 (in Chinese).
陈和渭. 现代国企研究, 2018, 144(18), 178.
7 Zheng L, Li K K, Wang Q L, et al. Environmental Technology & Innovation, 2021, 22, 101508.
8 Wang P, Hu Y F. Science & Technology in Chemical Industry, 2019, 27(2), 62 (in Chinese).
王芃, 胡云峰. 化工科技, 2019, 27(2), 62.
9 Kasahara S, Kamio E, Ishigami T, et al. Journal of Membrane Science, 2012, 415, 168.
10 Rao L L, Liu S F, Wang L L, et al. Chemical Engineering Journal, 2019, 359, 428.
11 Gawel B, Gawel K, Oye G. Materials, 2010, 3, 2815.
12 Lopez-Salas N, Ferrer M L, Gutierrez M C, et al. Carbon, 2018, 134, 470.
13 Du J, Li W C, Ren Z X, et al. Journal of Energy Chemistry, 2020, 42, 56.
14 Byamba-Ochir N, Shim W G, Balathanigaimani M S, et al. Applied Energy, 2017, 190(15), 257.
15 Rodriguez-Reinoso F, Molina-Sabio M, Gonzalez M T. Carbon, 1995, 33(1), 15.
16 Shen W Z, Zheng J T, Qin Z F. Journal of Colloid and Interface Science, 2003, 264, 467.
17 Gao Y R, Wang Y, Li Y. Journal of Henan Polytechnic University (Natural Science), 2022, 41(6), 1 (in Chinese).
高雅茹, 王燕, 李瑶. 河南理工大学学报 (自然科学版), 2022, 41(6), 1.
18 Liu Y J, Qi R X, Ge Z S, et al. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 236.
19 Li Y, Zhang T, Wang Y G, et al. Journal of Environmental Chemical Engineering, 2021, 9(5), 106149.
20 Li Y, Wang S Y, Wang B B, et al. Nanomaterials, 2020, 10(1), 174.
21 Huo S L, Liu M Q, Wu L L, et al. Journal of Power Sources, 2018, 387(31), 81.
22 Lee D, Zhang C, Wei C, et al. Journal of Materials Chemistry A, 2013, 1(47), 14862.
23 Hu X, Radosz M, Cychosz K A, et al. Environmental Science & Techno-logy, 2011, 45(16), 7068.
24 Zhang Z, Zhou J, Xing W, et al. Physical Chemistry Chemical Physics, 2013, 15(7), 2523.
25 Wang L, Yang R T. Journal of Physical Chemistry C, 2014, 116(1), 1099.
26 Guo Q R, Chen C, Li Z, et al. Chemical Engineering Journal, 2019, 371, 414.
27 Wang J, Krishna R, Yang J, et al. Environmental Science & Technology, 2015, 49(15), 9364.
28 Álvarez-Gutiérrez N, Gil M V, Rubiera F, et al. Fuel Processing Technology, 2016, 142, 361.
29 Zhao Y F, Yao K X, Chen Y L, et al. Carbon, 2017, 122, 258.
30 Zhang P X, Wang J, Fan W, et al. Chemical Engineering Journal, 2019, 375, 121931.
31 Oschatz M, Antonietti M. Energy & Environmental Science: EES, 2018, 11(1), 57.
32 Wei S, Lan Y, Meng R, et al. Journal of Chemical & Engineering Data, 2018, 8, 63.
33 Wu X F, Yuan B, Bao Z B, et al. Journal of Colloid & Interface Science, 2014, 430, 78.
34 Tan H L, Chen Q C, Chen T T, et al. Chemical Engineering Journal, 2020, 391, 123521.
35 Zhang W C, Cheng Y H, Guo C S, et al. Industrial & Engineering Chemistry Research, 2018, 57, 10985.
36 Yang J F, Li J M, Wang W, et al. Industrial & Engineering Chemistry Research, 2013, 52, 17856.
37 Yuan B, Wu X F, Chen Y X, et al. Environmental Science & Technology, 2013, 47, 5474.
38 Jung M J, Park J, Cho S Y, et al. Surfaces and Interfaces, 2021, 23, 100960.
[1] 杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
[2] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[3] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[4] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[5] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 21030042-6.
[6] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[7] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[8] 张斌, 徐桂英. 可穿戴热电发电器的研究进展[J]. 材料导报, 2023, 37(2): 20120005-18.
[9] 田玉玉, 何韧, 吴菊英, 钟卫洲, 张凯. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 21110277-14.
[10] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[11] 杨文冬, 孙浩强, 南敬昌, 刘蕊. 小型化柔性印制天线:材料、工艺及应用[J]. 材料导报, 2023, 37(12): 21070182-13.
[12] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[13] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[14] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[15] 张姣娇, 王晓君, 张卓雅. 利用碳纳米纤维/Pt纳米片构建柔性电极用于葡萄糖检测[J]. 材料导报, 2022, 36(9): 21010143-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed