Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21110277-14    https://doi.org/10.11896/cldb.21110277
  无机非金属及其复合材料 |
电容式柔性压力传感器的性能优化原理及研究进展
田玉玉, 何韧, 吴菊英, 钟卫洲*, 张凯
中国工程物理研究院总体工程研究所,四川 绵阳 621999
Capacitive Flexible Pressure Sensor: Optimization Principle and Research Progress
TIAN Yuyu, HE Ren, WU Juying, ZHONG Weizhou*, ZHANG Kai
Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999,Sichuan,China
下载:  全 文 ( PDF ) ( 21118KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为可穿戴电子器件的重要分支,柔性压力传感器在人机交互、健康监测等方面具有广阔的应用前景。随着新型材料与新的器件制备策略的不断开发,柔性压力传感器的力学与电学性能不断被优化以适应不同的应用需求。
相较于其他传感器,电容式柔性压力传感器具有灵敏度高、功耗低、响应快的优势。电容式柔性压力传感器的性能优化主要通过改变器件的结构参数来实现,如电极有效正对面积、电极间距、有效介电常数等。主要方法策略包括新型纳米材料的应用、新型微结构设计和新型复合材料的开发。主要优化原理有四种:(1)通过改变电极表面粗糙度来改变电极有效正对面积;(2)在电极或介电层中引入空气层以降低弹性模量;(3)在介电层中引入空气或高介电常数材料来改变有效介电常数;(4)通过复合材料在介电层中形成微电容以改变总体电容变化。
在电容式柔性压力传感器的性能优化研究中存在一个共性问题,即高灵敏度与宽检测范围之间总是存在一种制约关系。在一定压力范围内,尤其是低压范围,灵敏度提升往往会使器件较易达到压缩饱和而使检测范围有限,即线性度较差。近年来,研究者们着眼于高灵敏度与宽检测范围之间的制约问题,对介电层的梯度结构设计及混合响应机制进行探索,取得了丰硕的成果,在保证高灵敏度的前提下大幅提升了器件的检测范围。然而,迟滞、稳定性及阵列优化仍是电容式柔性压力传感器面向实际应用时存在的问题。
本文系统归纳了电容式柔性压力传感器的性能优化原理,分别对电极和介电层的结构设计与材料优化方法进行了介绍,分析了电容式柔性压力传感器在性能优化研究中面临的难题,并进行了展望,以期为设计和制备满足应用需求条件的高性能柔性压力传感器提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田玉玉
何韧
吴菊英
钟卫洲
张凯
关键词:  柔性压力传感器  电容式  微结构设计  复合材料  多级结构  混合响应    
Abstract: Flexible pressure sensors are an important branch of wearable electronics, which have extensive prospects for applications in human-machine interface and health monitoring. The electrical and mechanical properties of flexible pressure sensor are rapidly being improved to meet various application requirements following the development and application of advanced materials and new device preparation strategies.
Capacitive flexible pressure sensors are superiorto other forms of flexible pressure sensors because of their high sensitivity, low power consumption, and fast response. The performance of capacitive flexible pressure sensors can be optimized by changing device structure parameters, such as effective electrode area, electrode distance, effective dielectric constant, etc. The main improvement approaches are using novel nano-materials, adopting new micro-structure designs, and developing advanced composite materials. There are four basic optimization principles:(i) increasing the efficient surface area by increasing the electrode surface roughness; (ii) introducing air to obtain a low elasticity modulus of the electrode or dielectric layer; (iii) optimizing the effective dielectric constant by introducing air or fillers; (iv) producing micro-capacitors to influence the overall capacitance change of the device.
Maintaining high sensitivity over a broad pressure range remains a critical challenge in flexible capacitive pressure sensor research. Devices with ultra-high sensitivity can easily reach compression saturation under a certain pressure. The saturation limits the detection range, resulting in poor linearity. Some recent studies have focused on improving the sensitivity and detection range of flexible capacitive pressure sensors. Gradient structure design and application of hybrid mechanisms have been demonstrated to be effective methods for obtaining a wide detection range without sacrificing sensitivity. However, hysteresis, stability and array optimization are additional problems confronting the practical application of capacitive flexible pressure sensors.
This review focuses on the rapid development of capacitive flexible pressure sensors. Mechanisms of the performance optimization are reviewed, followed by examples of structure design strategies and material optimization methods. The review concludes with a critical reflection of the current status and challenges, and discusses the prospect of the capacitive flexible pressure sensor development. This review can help to improve the design and preparation of personalized capacitive flexible pressure sensors.
Key words:  flexible pressure sensor    capacitive    microstructure design    composite materials    gradient structure    hybrid response
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TH-39  
基金资助: 国家自然科学基金(12172344)
通讯作者:  *钟卫洲,中国工程物理研究院总体工程研究所研究员、博士研究生导师。2001年西南交通大学工程力学专业本科毕业,2004年中国工程物理研究院固体力学专业硕士毕业后留中国工程物理研究院总体工程研究所工作至今,2010年西南交通大学工程力学专业博士毕业。2014年1月至2015年1月在法国梅斯国立工程师学校 (ENIM)访学一年。目前主要从事材料与结构冲击动力学方面的研究工作。主/参编材料试验方法国家标准2项,公开发表学术论文50余篇,其中30余篇被SCI、EI收录。zhongwz@caep.cn   
作者简介:  田玉玉,中国工程物理研究院总体工程研究所博士后。2012年潍坊学院化学专业毕业,2015年中国科学技术大学材料工程专业硕士毕业,2020年上海交通大学材料科学与工程专业博士毕业。2020年7月至2021年7月在中国工程物理研究员总体工程研究所工作一年,2021年9月加入中国工程物理研究院总体工程所博士后流动站,在钟卫洲研究员的合作指导下进行研究工作。目前主要研究领域为导电高分子复合材料及其功能应用。
引用本文:    
田玉玉, 何韧, 吴菊英, 钟卫洲, 张凯. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 21110277-14.
TIAN Yuyu, HE Ren, WU Juying, ZHONG Weizhou, ZHANG Kai. Capacitive Flexible Pressure Sensor: Optimization Principle and Research Progress. Materials Reports, 2023, 37(16): 21110277-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110277  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21110277
1 Li R, Zhou Q, Bi Y, et al. Sensors and Actuators, A: Physical, 2021, 321, 112425.
2 Chen W, Yan X. Journal of Materials Science and Technology, 2020, 43, 175.
3 Huang Y, Fan X, Chen S C, et al. Advanced Functional Materials, 2019, 29 (12), 1808509.
4 Niu H, Zhang H, Yue W, et al. Small, 2021, 17 (41), 2100804.
5 Zang Y, Zhang F, Di C A, et al. Materials Horizons, 2015, 2 (2), 140.
6 Wang Z, Wang S, Zeng J, et al. Small, 2016, 12 (28), 3827.
7 Liu M Y, Hang C Z, Zhao X F, et al. Nano Energy, 2021, 87, 106181.
8 Sharma S, Chhetry A, Sharifuzzaman M, et al. ACS Applied Materials and Interfaces, 2020, 12 (19), 22212.
9 Hsieh G W, Ling S R, Hung F T, et al. Nanoscale, 2021, 13, 6076.
10 Carvalho A F, Kulyk B, Fernandes A J S, et al. Advanced Materials, 2021, 34 (8), 2101326.
11 Kanoun O, Bouhamed A, Ramalingame R, et al. Sensors, 2021, 21 (2), 341.
12 Yang J, Luo S, Zhou X, et al. ACS Applied Materials and Interfaces, 2019, 11 (16), 14997.
13 Lee P, Ham J, Lee J, et al. Advanced Functional Materials, 2014, 24 (36), 5671.
14 Valentine A D, Busbee T A, Boley J W, et al. Advanced Materials, 2017, 29 (40), 1703817.
15 Wang Y, Liu Q, Zhang J, et al. Advanced Materials, 2019, 31 (35), 1902955.
16 Cheng Y, Wang R, Zhai H, et al. Nanoscale, 2017, 9 (11), 3834.
17 Li W, Xiong L, Pu Y, et al. Nanoscale Research Letters, 2019, 14, 183.
18 Yao S, Zhu Y. Nanoscale, 2014, 6 (4), 2345.
19 Wan Y, Qiu Z, Hong Y, et al. Advanced Electronic Materials, 2018, 4 (4), 1700586.
20 Liu Y, Zhang J, Gao H, et al. Nano Letters, 2017, 17 (2), 1090.
21 Chen Z, Tian W, Zhang X. Journal of Micromechanics and Microenginee-ring, 2017, 27 (3), 034002.
22 Joo Y, Byun J, Seong N, et al. Nanoscale, 2015, 7 (14), 6208.
23 Bae G Y, Han J T, Lee G, et al. Advanced Materials, 2018, 30 (43), 1803388.
24 Zhang Z, Gui X, Hu Q, et al. Advanced Electronic Materials, 2021, 7 (7), 2100174.
25 Atalay O, Atalay A, Gafford J, et al. Advanced Materials Technologies, 2018, 3 (1), 1700237.
26 Pang C, Koo J H, Nguyen A, et al. Advanced Materials, 2015, 27, 634.
27 Lipomi D J, Vosgueritchian M, Tee B C K, et al. Nature Nanotechnology, 2011, 6 (12), 788.
28 Boutry C M, Nguyen A, Lawal Q O, et al. Advanced Materials, 2015, 27 (43), 6954.
29 Li T, Luo H, Qin L, et al. Small, 2016, 12 (36), 5042.
30 Mannsfeld S C B, Tee B C K, Stoltenberg R M, et al. Nature Materials, 2010, 9 (10), 859.
31 Qiu Z, Wan Y, Zhou W, et al. Advanced Functional Materials, 2018, 28 (37), 1802343.
32 Zhou Q, Ji B, Wei Y, et al. Journal of Materials Chemistry A, 2019, 7 (48), 27334.
33 Schwartz G, Tee B C K, Mei J, et al. Nature Communications, 2013, 4, 1858.
34 Tee B C K, Chortos A, Dunn R R, et al. Advanced Functional Materials, 2014, 24 (34), 5427.
35 Peng S, Blanloeuil P, Wu S, et al. Advanced Materials Interfaces, 2018, 5 (18), 1800403.
36 Ruth S R A, Bao Z. ACS Applied Materials and Interfaces, 2020, 12 (52), 58301.
37 Pyo S, Lee J I, Kim M O, et al. Journal of Micromechanics and Microe-ngineering, 2014, 24 (7), 075012.
38 Cho S H, Lee S W, Yu S, et al. ACS Applied Materials and Interfaces, 2017, 9 (11), 10128.
39 Huang Z, Gao M, Yan Z, et al. Sensors and Actuators, A: Physical, 2017, 266, 345.
40 Miller S, Bao Z. Journal of Materials Research, 2015, 30 (23), 3584.
41 Kwon D, Lee T I, Shim J, et al. ACS Applied Materials and Interfaces, 2016, 8 (26), 16922.
42 Bilent S, Dinh T H N, Martincic E, et al. In: 2019 Symposium on Design, Test, Integration and Packaging of MEMS and MOEMS, DTIP. Paris, 2019.
43 Hwang J, Kim Y, Yang H, et al. Composites Part B: Engineering, 2021, 211, 108607.
44 Yang J C, Kim J O, Oh J, et al. ACS Applied Materials and Interfaces, 2019, 11 (21), 19472.
45 Lee B M, Loh K J A .Journal of Materials Science, 2015, 50 (7), 2973.
46 Bao W S, Meguid S A, Zhu Z H, et al. Nanotechnology, 2011, 22 (48), 485704.
47 Saberi A A. Physics Reports, 2015, 578, 1.
48 Lee B M, Huang Z, Loh K J. Materials Research Express, 2020, 7 (4), 046406.
49 Wang X, Gu Y, Xiong Z, et al. Advanced Materials, 2014, 26, 1336.
50 Guo Z, Mo L, Ding Y, et al. Micromachines, 2019, 10 (11), 715.
51 Park S Y, Lee J E, Kim Y H, et al. Sensors and Actuators, B: Chemical, 2018, 258, 775.
52 Wongtimnoi K, Guiffard B, Bogner-Van de Moortèle A, et al. Composites Science and Technology, 2011, 71 (6), 885.
53 Lin C, Wang H, Yang W. Journal of Applied Physics, 2010, 108 (1), 013509.
54 Liang X, Zhao T, Hu Y, et al. Journal of Nanoparticle Research, 2014, 16 (9), 2578.
55 Li J, Ma P C, Chow W S, et al. Advanced Functional Materials, 2007, 17 (16), 3207.
56 Wang J, Jiu J, Nogi M, et al. Nanoscale, 2015, 7 (7), 2926.
57 Chun S, Hong A, Choi Y, et al. Nanoscale, 2016, 8 (17), 9185.
58 Kou H, Zhang L, Tan Q, et al. Sensors and Actuators, A: Physical, 2018, 277 (2010), 150.
59 Yang X, Wang Y, Qing X. Sensors and Actuators, A: Physical, 2019, 299, 111579.
60 Choi J, Kwon D, Kim K, et al. ACS Applied Materials and Interfaces, 2020, 12 (1), 1698.
61 Tsangaris G M, Psarras G C, Kouloumbi N. Journal of Materials Science, 1998, 33 (8), 2027.
62 Wang J, Jiu J, Nogi M, et al. Nanoscale, 2015, 7, 2926.
63 Chung S Y, Kim I D, Kang S J L. Nature Materials, 2004, 3, 774.
64 Barkoula N M, Alcock B, Cabrera N O, et al. Polymers and Polymer Composites, 2018, 39 (3), 691.
65 Zhang L, Shan X, Bass P, et al. Scientific Reports, 2016, 6, 35763.
66 Chhetry A, Sharma S, Yoon H, et al. Advanced Functional Materials, 2020, 30 (31), 1910020.
67 Chen Y S, Hsieh G W, Chen S P, et al. ACS Applied Materials and Interfaces, 2015, 7 (1), 45.
68 Ponnamma D, Cabibihan J J, Rajan M, et al. Materials Science and Engineering C, 2019, 98, 1210.
69 Wang G, Deng Y, Xiang Y, et al. Advanced Functional Materials, 2008, 18 (17), 2584.
70 Yin B, Qiu Y, Zhang H, et al. RSC Advances, 2015, 5 (15), 11469.
71 Wang Z L, Song J. Science, 2006, 312 (5771), 242.
72 Kang B C, Park S J, Ha T J. ACS Applied Materials and Interfaces, 2021, 13 (35), 42014.
73 Liang G, Wang Y, Mei D, et al. Smart Materials and Structures, 2017, 26, 075003.
74 Liu T, Gong X, Xu Y, et al. Soft Matter, 2013, 9 (42), 10069.
75 Mietta J L, Jorge G, Martín Negri R. Smart Materials and Structures, 2014, 23 (8), 085026.
76 Yu M, Yang P, Fu J, et al. Sensors and Actuators, A: Physical, 2016, 245, 127.
77 Mietta J L, Tamborenea P I, Martin Negri R. Soft Matter, 2016, 12 (2), 422.
78 Fan Y, Liao C, Xie L, et al. Journal of Materials Chemistry C, 2018, 6 (20), 5401.
79 Yang F. Materials Science and Engineering A, 2003, 358 (1-2), 226.
80 Liu M, Sun J, Sun Y, et al. Journal of Micromechanics and Microengineering, 2009, 19 (3), 035028.
81 Dinh T H N, Martincic E, Dufour-Gergam E, et al. Journal of Sensors, 2017, 2017 (1), 8235729.
82 Liu S Y, Lu J G, Shieh H P D. IEEE Sensors Journal, 2018, 18, 1870.
83 Wu J, Yao Y, Zhang Y, et al. Nanoscale, 2020, 12 (41), 21198.
84 Ji B, Zhou Q, Lei M, et al. Small, 2021, 17 (43), 2103312.
85 Ji B, Zhou Q, Hu B, et al. Advanced Materials, 2021, 33 (27), 2100859.
86 Ha K H, Zhang W, Jang H, et al. Advanced Materials, 2021, 33 (48), 2103320.
87 Cheng W, Yu L, Kong D, et al. IEEE Electron Device Letters, 2018, 39 (7), 1069.
88 Cheng W, Wang J, Ma Z, et al. IEEE Electron Device Letters, 2018, 39 (2), 288.
89 Lee K, Lee J, Kim G, et al. Small, 2017, 13 (43), 38.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[5] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[6] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[7] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[8] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[9] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[10] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[11] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[12] 关洪达, 张涛, 何新波. C/SiC陶瓷基复合材料研究与应用现状[J]. 材料导报, 2023, 37(16): 21090178-10.
[13] 王健阳, 马颖, 李思仪, 李天微, 王秀梅, 万晔, 郜思同, 郭惠琳, 韦杰. 石墨烯/卟啉复合气凝胶的制备与性能研究[J]. 材料导报, 2023, 37(16): 21080120-5.
[14] 吴强, 张薇, 余创, 程时杰, 谢佳. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175-15.
[15] 张曦挚, 崔红, 张嘉豪, 胡杨, 邓红兵. C/C-SiC:W/Cu复合涂层的制备和性能[J]. 材料导报, 2023, 37(15): 21120238-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed