Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21100175-15    https://doi.org/10.11896/cldb.21100175
  无机非金属及其复合材料 |
高硫含量正极在锂硫电池中的研究进展
吴强1,2,†, 张薇1,†, 余创1, 程时杰1, 谢佳1,*
1 华中科技大学电气与电子工程学院,武汉 430000
2 华中科技大学材料科学与工程学院,武汉 430000
Research Progress of Sulfur Cathode with High Sulfur Content for Lithium-Sulfur Batteries
WU Qiang1,2,†, ZHANG Wei1,†, YU Chuang1, CHENG Shijie1, XIE Jia1,*
1 School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430000, China
2 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430000, China
下载:  全 文 ( PDF ) ( 30457KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂硫电池具有高能量密度、原料储量丰富、低成本和环境友好等优点,有望发展为下一代实用化二次电池体系之一。然而锂硫电池中活性物质硫导电性差、多硫化物的溶解与穿梭效应及充放电过程中的体积膨胀等问题阻碍了其商业化进程。通过采用载体材料将硫限域、封装,可以一定程度上解决锂硫电池面临的以上问题。但是传统复合硫正极材料中硫含量和活性物质利用率较低,限制了高能量密度锂硫电池的发展。因此,开发具有高性能和高硫含量的复合硫正极是实现锂硫电池实用化的有效手段。本文从提高复合材料硫含量入手,综述了近年来碳-硫复合材料、过渡金属化合物-硫复合材料和有机硫三种高硫正极材料在锂硫电池中的研究进展,重点讲述了高硫材料的合成方法及其结构对硫和多硫化物的限制与动力学加速作用,并对高硫含量正极材料的未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴强
张薇
余创
程时杰
谢佳
关键词:  硫正极  高硫含量  碳-硫复合材料  过渡金属化合物-硫复合材料  有机硫    
Abstract: Because of high energy density, abundant storage, low cost and environmental friendliness, lithium-sulfur batteries have been expected as one of the most promising energy storage system. However, the practical application of lithium-sulfur batteries is dramatically hindered by the problems such as poor electro-conductivity of sulfur, dissolution and shuttle effect of polysulfide and volume expansion during charging and discharging process. The above issues can be solved to a certain extent through using sulfur host to limit and encapsulate sulfur. However, the low sulfur content and active material utilization of traditional sulfur-based composite cathodes greatly limit the development of lithium-sulfur batteries with high energy density. Therefore, it is an effective means to exploit the sulfur cathode materials with high performance and high sulfur content for the practical application of lithium-sulfur batteries. Aimed at increasing the sulfur content of sulfur cathodes, this review summarizes the research progress of three kinds of sulfur-based composite materials for lithium-sulfur batteries in recent years, including carbon-sulfur composites, transition metal compounds-sulfur composites and organosulfur. The synthetic methods, chemical structure and their effect on the confinement and kinetics acceleration for sulfur and polysulfide are deeply discussed, and the future development of high sulfur content cathode materials for lithium-sulfur batteries is finally prospected.
Key words:  sulfur cathodes    high sulfur content    carbon-sulfur composites    transition metal compounds-sulfur composites    organosulfur
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  O469  
基金资助: 国家自然科学基金面上项目(21975087);中国博士后面上基金(2020M672337)
通讯作者:  * 谢佳,2002年于北京大学获得学士学位,2008年于斯坦福大学化学系获得博士学位,现为华中科技大学电气与电子工程学院教授、博士研究生导师。国家重点基础研究计划(青年973计划)“高比能锂硫二次电池界面问题的基础研究”的首席科学家。2008—2012年在美国陶氏化学担任高级研究员,2012—2015年担任国轩高科动力能源股份公司研究院院长。目前主要研究领域为先进电化学储能材料与器件。在Science,Nature子刊、Energy & Environmental Science等权威期刊发表SCI论文150余篇,获专利授权80余项,其中发明专利50余项。xiejia@hust.edu.cn   
作者简介:  吴强,2020年6月毕业于南昌航空大学,获得工学学士学位。现为华中科技大学材料科学与工程学院硕士研究生,在谢佳教授的指导下进行研究。目前主要研究领域为锂硫电池。张薇,2010年和2013年分别获得北京理工大学学士和硕士学位,2019年于武汉大学高等研究院获得工学博士学位。现为华中科技大学电气与电子工程学院与谢佳教授合作的博士后研究员。目前主要研究领域为高性能锂硫电池。†共同第一作者
引用本文:    
吴强, 张薇, 余创, 程时杰, 谢佳. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175-15.
WU Qiang, ZHANG Wei, YU Chuang, CHENG Shijie, XIE Jia. Research Progress of Sulfur Cathode with High Sulfur Content for Lithium-Sulfur Batteries. Materials Reports, 2023, 37(15): 21100175-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100175  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21100175
1 Chu S, Majumdar A. Nature, 2012, 488(7411), 294.
2 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials, 2012, 11(1), 19.
3 Seh Z W, Sun Y M, Zhang Q F, et al. Chemical Society Reviews, 2016, 45(20), 5605.
4 Yin Y X, Xin S, Guo Y G, et al. Angewandte Chemie International Edition, 2013, 52(50), 13186.
5 Manthiram A, Fu Y Z, Chung S H, et al. Chemical Reviews, 2014, 114(23), 11751.
6 Wild M, O'Neill L, Zhang T, et al. Energy & Environmental Science, 2015, 8(12), 3477.
7 Bonnick P, Muldoon J. Energy & Environmental Science, 2020, 13(12), 4808.
8 Bhargav A, He J R, Gupta A, et al. Joule, 2020, 4(2), 285.
9 Yang Y, Zheng G Y, Cui Y. Chemical Society Reviews, 2013, 42(7), 3018.
10 Ma L, Hendrickson K E, Wei S Y, et al. Nano Today, 2015, 10(3), 315.
11 Jana M L, Xu R, Cheng X B, et al. Energy & Environmental Science, 2020, 13(4), 1049.
12 Ji X L, Lee K T, Nazar L F. Nature Materials, 2009, 8(6), 500.
13 Jin K K, Zhou X F, Zhang L Z, et al. Journal of Physical Chemistry C, 2013, 117(41), 21112.
14 Cheng X B, Huang J Q, Zhang Q, et al. Nano Energy, 2014, 4, 65.
15 Xiao Z B, Yang Z, Nie H G, et al. Journal of Materials Chemistry A, 2014, 2(23), 8683.
16 Zhao Y, Wu W L, Li J X, et al. Advanced Materials, 2014, 26(30), 5113.
17 Lee J S, Jun J, Jang J, et al. Small, 2017, 13(12), 1602984.
18 Fang R P, Li G X, Zhao S Y, et al. Nano Energy, 2017, 42, 205.
19 Gueon D, Hwang J T, Yang S B, et al. ACS Nano, 2018, 12(1), 226.
20 Walle M D, Zhang M Y, Zeng K, et al. Applied Surface Science, 2019, 497, 143773.
21 Gan B L, Tang K K, Chen Y L, et al. Journal of Energy Chemistry, 2020, 42, 174.
22 Walle M D, Liu Y N. Materials for Renewable and Sustainable Energy, 2021, 10, 1.
23 Nguyen Q H, Luu V T, Lim S N, et al. ACS Applied Materials & Interfaces, 2021, 13(24), 28036.
24 Kim H, Lim H D, Kim J, et al. Journal of Materials Chemistry A, 2014, 2(1), 33.
25 Fang R P, Chen K, Yin L C, et al. Advanced Materials, 2019, 31(9), 1800863.
26 Ji L W, Rao M M, Zheng H M, et al. Journal of the American Chemical Society, 2011, 133(46), 18522.
27 Wang H L, Yang Y, Liang Y Y, et al. Nano Letters, 2011, 11(7), 2644.
28 Evers S, Nazar L F. Chemical Communications, 2012, 48(9), 1233.
29 Sun H, Xu G L, Xu Y F, et al. Nano Research, 2012, 5(10), 726.
30 Xu H, Deng Y F, Shi Z C, et al. Journal of Materials Chemistry A, 2013, 1(47), 15142.
31 Hu G J, Xu C, Sun Z H, et al. Advanced Materials, 2016, 28(8), 1603.
32 Song J X, Yu Z X, Gordin M L, et al. Nano Letters, 2016, 16(2), 864.
33 Zhang J, Yang C P, Yin Y X, et al. Advanced Materials, 2016, 28(43), 9539.
34 Pei F, Lin L L, Ou D H, et al. Nature Communications, 2017, 8(1), 482.
35 Chung S H, Manthiram A. Advanced Materials, 2018, 30(6).
36 Du Z Z, Chen X J, Hu W, et al. Journal of the American Chemical Society, 2019, 141(9), 3977.
37 Zhang T P, Hu F Y, Song C, et al. Chemical Engineering Journal, 2021, 407, 127141.
38 Wang L, Liu S K, Hu J, et al. Nano Research, 2021, 14(5), 1355.
39 Xia Y, Fang R Y, Xiao Z, et al. ACS Applied Materials & Interfaces, 2017, 9(28), 23782.
40 Li G, Sun J H, Hou W P, et al. Nature Communications, 2016, 7, 10601.
41 Hu F Y, Peng H, Zhang T P, et al. Journal of Energy Chemistry, 2021, 58, 115.
42 Pan H, Cheng Z B, Chen J Q, et al. Energy Storage Materials, 2020, 27, 435.
43 Yang J, Xie J, Zhou X Y, et al. Journal of Physical Chemistry C, 2014, 118(4), 1800.
44 Li Q, Zhang Z A, Guo Z P, et al. Carbon, 2014, 78, 1.
45 He J R, Chen Y F, Lv W Q, et al. ACS Energy Letters, 2016, 1(4), 820.
46 Du W C, Yin Y X, Zeng X X, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 3584.
47 Chen X, Xiao Z B, Ning X T, et al. Advanced Energy Materials, 2014, 4, 1301988.
48 Xu T, Song J X, Gordin M L, et al. ACS Applied Materials & Interfaces, 2013, 5(21), 11355.
49 Chung S H, Chang C H, Manthiram A. ACS Nano, 2016, 10(11), 10462.
50 Liu J T, Xiao S H, Zhang Z Y, et al. Nanoscale, 2020, 12(8), 5114.
51 Wang N N, Wang J, Wang J H, et al. Journal of Electroanalytical Che-mistry, 2021, 880, 114900.
52 Raulo A, Gupta A, Srivastava R, et al. Chemical Communications, 2021, 57(4), 544.
53 Chen M F, Jiang S X, Huang C, et al. Chemsuschem, 2017, 10(8), 1803.
54 Chen F, Yang J, Bai T, et al. Electrochimica Acta, 2016, 192, 99.
55 Zhang S T, Zheng M B, Lin Z X, et al. Journal of Materials Chemistry A, 2014, 2(38), 15889.
56 Seh Z W, Li W Y, Cha J J, et al. Nature Communications, 2013, 4(1), 1331.
57 Li Z, Zhang J T, Guan B Y, et al. Nature Communications, 2016, 7, 13065.
58 Liu M T, Jhulki S, Sun Z F, et al. Nano Energy, 2021, 79, 105428.
59 Ni J, Jin L M, Xue M Z, et al. Electrochimica Acta, 2019, 296, 39.
60 Ma L B, Chen R P, Zhu G Y, et al. ACS Nano, 2017, 11(7), 7274.
61 Xiao D J, Lu C X, Chen C M, et al. Energy Storage Materials, 2018, 10, 216.
62 Liang X, Hart C, Pang Q, et al. Nature Communications, 2015, 6(1), 5682.
63 Liang X, Nazar L F. ACS Nano, 2016, 10(4), 4192.
64 Zhang Z, Luo D, Li G R, et al. Matter, 2020, 3(3), 920.
65 Seh Z W, Yu J H, Li W Y, et al. Nature Communications, 2014, 5(1), 5017.
66 Ma L, Wei S Y, Zhuang H L, et al. Journal of Materials Chemistry A, 2015, 3(39), 19857.
67 Pang Q, Kundu D P, Nazar L F. Materials Horizons, 2016, 3(2), 130.
68 Yuan Z, Peng H J, Hou T Z, et al. Nano Letters, 2016, 16(1), 519.
69 Zhang S S, Tran D T. Journal of Materials Chemistry A, 2016, 4(12), 4371.
70 Wang Y K, Zhang R F, Pang Y C, et al. Energy Storage Materials, 2019, 16, 228.
71 Mosavati N, Salley S O, Ng K Y S. Journal of Power Sources, 2017, 340, 210.
72 Xiong C, Zhu G Y, Jiang H R, et al. Energy Storage Materials, 2020, 33, 147.
73 Song Y Z, Sun Z T, Fan Z D, et al. Nano Energy, 2020, 70, 104555.
74 Liang X, Garsuch A, Nazar L F. Angewandte Chemie International Edition, 2015, 54(13), 3907.
75 Zhang B, Luo C, Deng Y Q, et al. Advanced Energy Materials, 2020, 10(15), 2000091.
76 Hao Q Y, Cui G L, Zhang Y G, et al. Chemical Engineer Journal, 2020, 381, 122672.
77 Peng H, Zhang T P, Shao W L, et al. Applied Surface Science, 2021, 569, 150935.
78 Zhang X Y, Chen K, Sun Z H, et al. Energy & Environmental Science, 2020, 13(4), 1076.
79 Liu J, Wang M F, Xu N, et al. Energy Storage Materials, 2018, 15, 53.
80 Visco S J, DeJonghe L C. Journal of The Electrochemical Society, 1988, 135(12), 2905.
81 Wu M, Cui Y, Bhargav A, et al. Angewandte Chemie International Edition, 2016, 55(34), 10027.
82 Wu M, Bhargav A, Cui Y, et al. ACS Energy Letters, 2016, 1(6), 1221.
83 Bhargav A, Ma Y, Shashikala K, et al. Journal of Materials Chemistry A, 2017, 5(47), 25005.
84 Cui Y, Ackerson J D, Ma Y, et al. Advanced Functional Materials, 2018, 28(31), 1801791.
85 Wang D Y, Si Y B, Guo W, et al. Advanced Science, 2020, 7(4), 1902646.
86 Fan Q Q, Si Y B, Guo W, et al. The Journal of Physical Chemistry Letters, 2021, 12(2), 900.
87 Wang D Y, Si Y B, Li J J, et al. Journal of Materials Chemistry A, 2019, 7(13), 7423.
88 Preefer M B, Oschmann B, Hawker C J, et al. Angewandte Chemie International Edition, 2017, 56(47), 15118.
89 Zhou J Q, Qian T, Xu N, et al. Advanced Materials, 2017, 29(33), 1701294.
90 Hu P, He X X, Ng M F, et al. Angewandte Chemie International Edition, 2019, 58(38), 13513.
91 Briseno A L, Miao Q, Ling M M, et al. Journal of the American Chemical Society, 2006, 128(49), 15576.
92 Chung W J, Griebel J J, Kim E T, et al. Nature Chemistry, 2013, 5(6), 518.
93 Sun Z J, Xiao M, Wang S J, et al. Journal of Materials Chemistry A, 2014, 2(24), 9280.
94 Hu G J, Sun Z H, Shi C, et al. Advanced Materials, 2017, 29(11), 1603835.
95 Li X, Yuan L X, Liu D Z, et al. Energy Storage Materials, 2020, 26, 570.
96 Zhang T P, Hu F Y, Shao W L, et al. ACS Nano, 2021, 15(9), 15027.
97 Wang J L, Yang J, Xie J Y, et al. Advanced Materials, 2002, 14(13-14), 963.
98 Wang W X, Cao Z, Elia G A, et al. ACS Energy Letters, 2018, 3(12), 2899.
99 Jin Z Q, Liu Y G, Wang W K, et al. Energy Storage Materials, 2018, 14, 272.
100 Wei S Y, Ma L, Hendrickson K E, et al. Journal of the American Chemical Society, 2015, 137(37), 12143.
101 Yin L C, Wang J L, Yang J, et al. Journal of Materials Chemistry, 2011, 21(19), 6807.
102 Yin L C, Wang J L, Lin F J, et al. Energy & Environmental Science, 2012, 5(5), 6966.
103 Liu Y G, Wang W K, Wang A B, et al. Journal of Materials Chemistry A, 2017, 5(42), 22120.
104 Hu C J, Chen H W, Shen Y B, et al. Nature Communications, 2017, 8(1), 479.
105 Kuo C F J, Weret M A, Hung H Y, et al. Journal of Power Sources, 2019, 412, 670.
106 Li Z, Zhang J T, Chen Y M, et al. Nature Communications, 2015, 6(1), 8850.
107 Ye J, He F, Nie J, et al. Journal of Materials Chemistry A, 2015, 3(14), 7406.
108 Zhang Y Z, Wu Z Z, Pan G L, et al. ACS Applied Materials & Interfaces, 2017, 9(14), 12436.
109 Zhang W, Zhang Y Y, Peng L F, et al. Nano Energy, 2020, 76, 105083.
110 Li S P, Zhang W, Zeng Z Q, et al. Electrochemical Energy Reviews, 2020, 3(3), 613.
111 Zhang W, Li S P, Wang L H, et al. Sustainable Energy & Fuels, 2020, 4(7), 3588.
112 Li S P, Han Z L, Hu W, et al. Nano Energy, 2019, 60, 153.
113 Chen X, Peng L F, Wang L H, et al. Nature Communications, 2019, 10(1), 1021.
114 Li Z, Zhang J T, Lu Y, et al. Science Advance, 2018, 4(6), 1687.
115 He B, Rao Z X, Cheng Z X, et al. Advanced Energy Materials, 2021, 11(14), 2003690.
116 Lei J Y, Chen J H, Zhang H M, et al. ACS Applied Materials & Interfaces, 2020, 12(30), 33702.
117 Yuan H H, Guo C, Chen J H, et al. Journal of Energy Chemistry, 2021, 60, 360.
118 Lei J Y, Chen J H, Naveed A, et al. ACS Applied Energy Materials, 2021, 4(6), 5706.
119 Li X N, Liang J W, Lu Y, et al. Angewandte Chemie International Edition, 2017, 56(11), 2937.
120 Zeng S B, Li L G, Yu J P, et al. Electrochimica Acta, 2018, 263, 53.
121 Je S H, Hwang T H, Talapaneni S N, et al. ACS Energy Letters, 2016, 1(3), 566.
122 Kim H, Lee J, Ahn H, et al. Nature Communications, 2015, 6(1), 7278.
123 Guan R T, Zhong L, Wang S J, et al. ACS Applied Materials & Interfaces, 2020, 12(7), 8296.
124 Kim J, Elabd A, Chung S Y, et al. Chemistry of Materials, 2020, 32(10), 4185.
125 Liang Y, Xia M, Zhao Y X, et al. Journal of Colloid and Interface Science, 2022, 608, 652.
[1] 王明飞, 陈鹏, 陶雷, 薛宇, 刘敬业, 王学谦, 马懿星, 王郎郎, 李佳奇. 有机硫水解催化剂研究进展[J]. 材料导报, 2022, 36(17): 20080196-9.
[2] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[3] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[4] 郭雅芳, 肖剑荣, 侯永宣, 齐孟, 蒋爱华. 锂硫电池隔膜改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1073-1078.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed