Please wait a minute...
材料导报  2021, Vol. 35 Issue (13): 13052-13057, 13066    https://doi.org/10.11896/cldb.20040060
  无机非金属及其复合材料 |
金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展
魏安柯, 王磊*, 王祎
西安石油大学材料科学与工程学院,西安 710065
Recent Progress in MOFs-based Sulfur Cathode for Li-S Batteries
WEI Anke, WANG Lei*, WANG Yi
College of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 4416KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着便携式电子设备和电动汽车的发展,目前广泛使用的锂离子电池已不能满足市场的需求,锂硫电池作为一种非常有前途的高能化学电源,因其高理论比容量(1 675 mAh·g-1)和高理论能量密度(2 600 Wh·kg-1)引起了研究者的广泛关注。然而,在锂硫电池的发展过程中,一些突出的问题制约了其发展,包括硫本征导电性差、充放电前后体积变化大、较差的循环稳定性以及生成的多硫化物易溶解等。相关研究表明,将硫与金属-有机骨架(MOFs)材料复合,构筑成具有特殊微观结构的复合正极材料,可显著改善其导电性、循环稳定性和多硫化物的溶解等问题。本文从锂硫电池的工作原理出发,总结了MOFs作为硫载体的优势特点,综述了近几年MOFs材料在锂硫电池正极方面的研究进展,最后对锂硫电池MOFs基正极材料未来的研究思路与发展趋势进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏安柯
王磊
王祎
关键词:  锂硫电池  硫正极  金属-有机骨架(MOFs)  复合材料  电化学性能    
Abstract: With the development of portable electronic devices and electric vehicles, the widely used lithium ion batteries can no longer satisfy the market demand. Lithium sulfur batteries, as a promising high-energy chemical power source, have attracted extensive attention of researchers due to their high theoretical specific capacity (1 675 mAh·g-1) and high theoretical energy density (2 600 Wh·kg-1). However, some of the challenges in the development of lithium-sulfur batteries are inevitable, including the low conductivity of sulfur, large volume changes before and after charge and discharge, poor cycle stability, and the easy dissolution of polysulfide generated. It has been demonstrated that combining sulfur with MOFs-based materials with different structures to build composite cathode materials with a unique microstructure can significantly improve the conductivity, cyclic stability and the dissolution of polysulfide. In this review, the advantages of MOFs as sulfur carriers and recent research progress in MOFs-based sulfur cathode materials are summarized and commented upon based on the principle of lithium-sulfur batteries. Meanwhile, it also gives brief suggestions and outlooks on the future research directions in lithium-sulfur batteries.
Key words:  lithium-sulfur batteries    sulfur cathode    metal-organic frameworks    composite    electrochemical performance
               出版日期:  2021-07-10      发布日期:  2021-07-14
ZTFLH:  O646  
基金资助: 国家自然科学基金青年基金(51702257);陕西省自然科学基础研究计划项目(2018JQ5123);西安石油大学《材料科学与工程》省级优势学科(ys37020203)
作者简介:  魏安柯,2018年6月毕业于延安大学,获得工学学士学位。现为西安石油大学材料科学与工程学院硕士研究生,在王磊老师的指导下进行研究。目前主要研究领域为金属有机骨架在锂离子电池中的应用。
王磊,2014年于山东大学获得材料学博士学位。同年进入西安石油大学材料科学与工程学院工作至今,主要从事分子功能材料设计与制备、材料计算与模拟的研究。
引用本文:    
魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
WEI Anke, WANG Lei, WANG Yi. Recent Progress in MOFs-based Sulfur Cathode for Li-S Batteries. Materials Reports, 2021, 35(13): 13052-13057, 13066.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040060  或          http://www.mater-rep.com/CN/Y2021/V35/I13/13052
1 Bruce P G, Freunberger S A, Hardwick L J, et al. Nature Materials,2012,11(1),19.
2 Seh Z W, Sun Y, Zhang Q, et al. Chemical Society Reviews,2016,45(20),5605.
3 Goodenough J B, Kim Y. Chemistry of Materials,2009,22(3),587.
4 Kumar R, Raut D, Ahmad I, et al. Materials Horizons,2014,1(5),513.
5 Chen W, Lei T, Wu C, et al. Advanced Energy Materials,2018,8(10),1702348.
6 Wang Y, Zhang R, Pang Y, et al. Energy Storage Materials,2019,16,228.
7 Chen X, Hou T, Persson K A, et al. Materials Today,2019,22,142.
8 Bhargav A, Chang C H, Fu Y, et al. ACS Applied Materials & Interfaces,2019,11(6),6136.
9 Zheng Y, Zheng S, Xue H, et al. Journal of Materials Chemistry A,2019,7(8),3469.
10 Han P, Chung S H, Manthiram A. Energy Storage Materials,2019,17,317.
11 Wu Q, Zhou X, Xu J, et al. Journal of Energy Chemistry,2019,38,94.
12 Zhou S, Kong X, Zheng B, et al. ACS Nano,2019,13(8),9578.
13 Ma X, Lou Y, Chen X B, et al. Chemical Engineering Journal,2019,356,227.
14 Liang Z, Qu C, Guo W, et al. Advanced Materials,2018,30(37),1702891.
15 Xue Y, Zheng S, Xue H, et al. Journal of Materials Chemistry A,2019,7(13),7301.
16 Xiao X, Zou L, Pang H, et al. Chemical Society Reviews,2020,49(1),301.
17 Benítez A, Amaro-Gahete J, Esquivel D, et al. Nanomaterials,2020,10(3),424.
18 Wang Y, Deng Z, Huang J, et al. Energy Storage Materials,2021,36,466.
19 Walle M D, Zhang M, Zeng K, et al. Applied Surface Science,2019,497,143773.
20 Li M, Feng W, Su W, et al. Integrated Ferroelectrics,2019,200(1),82.
21 Zheng M, Chi Y, Hu Q, et al. Journal of Materials Chemistry A,2019,7(29),17204.
22 Rana M, Ahad S A, Li M, et al. Energy Storage Materials,2019,18,289.
23 Rana M, Li M, Huang X, et al. Journal of Materials Chemistry A,2019,7(12),6596.
24 Fan Y, Niu Z, Zhang F, et al. ACS Omega,2019,4(6),10328.
25 He Y, Qiao Y, Chang Z, et al. Angewandte Chemie,2019,131(34),11900.
26 Zhang L, Wang Y, Niu Z, et al. Carbon,2019,141,400.
27 Fu A, Wang C, Pei F, et al. Small,2019,15(10),1804786.
28 Shen J, Xu X, Liu J, et al. ACS Nano,2019,13(8),8986.
29 Tian Y, Huang H, Liu G, et al. Chemical Communications,2019,55(22),3243.
30 Xue Y, Zheng S, Xue H, et al. Journal of Materials Chemistry A,2019,7(13),7301.
31 Zhu Q L, Xu Q. Chemical Society Reviews,2014,43(16),5468.
32 Furukawa H, Ko N, Go Y B, et al. Science,2010,329(5990),424.
33 Zhou H C, Long J R, Yaghi O M. Chemical Reviews,2012,112(2),673.
34 Zheng Y, Zheng S, Xue H, et al. Journal of Materials Chemistry A,2019,7(8),3469.
35 Baumann A E, Aversa G E, Roy A, et al. Journal of Materials Chemistry A,2018,6(11),4811.
36 Geng P, Cao S, Guo X, et al. Journal of Materials Chemistry A,2019,7(33),19465.
37 Hong Y, Zhang X, Hao J, et al. Ionics,2020,26(3),1119.
38 Zhou J, Li R, Fan X, et al. Energy & Environmental Science,2014,7(8),2715.
39 Cai D, Lu M, Li L, et al. Small,2019,15(44),1902605.
40 Hou Y, Mao H, Xu L. Nano Research,2017,10(1),344.
41 Zheng J, Tian J, Wu D, et al. Nano Letters,2014,14(5),2345.
42 Hong X J, Tan T X, Guo Y K, et al. Nanoscale,2018,10(6),2774.
43 Gao G, Feng W, Su W, et al. Int. J. Electrochem. Sci.,2020,15,1426.
44 Zhou J, Li R, Fan X, et al. Energy & Environmental Science,2014,7(8),2715.
45 Jin W W, Li H J, Zou J Z, et al. RSC Advances,2018,8(9),4786.
46 Shanthi P M, Hanumantha P J, Gattu B, et al. Electrochimica Acta,2017,229,208.
47 Liu X, Wang S, Wang A, et al. Journal of Materials Chemistry A,2019,7(42),24515.
48 Li Q, Zhu H, Tang Y, et al. Chemical Communications,2019,55(80),12108.
49 Hong J Y, Jung Y, Park D W, et al. Electrochimica Acta,2018,259,1021.
50 Zhang L, Senthil R A, Pan J, et al. Ionics,2019,25(10),4761.
51 Jiang H, Liu X C, Wu Y, et al. Angewandte Chemie International Edition,2018,57(15),3916.
52 Zhang H, Zhao W, Zou M, et al. Advanced Energy Materials,2018,8(19),1800013.
53 Geng P, Cao S, Guo X, et al. Journal of Materials Chemistry A,2019,7(33),19465.
54 Yu F, Zhou H, Shen Q. Journal of Alloys and Compounds,2019,772,843.
55 Xu J, Zhang W, Chen Y, et al. Journal of Materials Chemistry A,2018,6(6),2797.
56 Yu H, Zhang B, Sun F, et al. Applied Surface Science,2018,450,364.
57 Chen G, Li Y, Zhong W, et al. Energy Storage Materials,2020,25,547.
58 Fan L, Wu H, Wu X, et al. Electrochimica Acta,2019,295,444.
59 Jiang Y, Liu H, Tan X, et al. ACS Applied Materials & Interfaces,2017,9(30),25239.
60 Zhang L, Zhu S, Li X, et al. Ionics,2019,25(3),1117.
61 Chang Z, Ding B, Dou H, et al. Chemistry-A European Journal,2018,24(15),3768.
62 Liu H, Chen Z, Zhou L, et al. Journal of Materials Chemistry A,2019,7(12),7074.
63 Xu F, Jin B, Li H, et al. New Journal of Chemistry,2019,43(46),18294.
64 Kim T, Song W, Son D Y, et al. Journal of Materials Chemistry A,2019,7(7),2942.
65 Xie J, Li B Q, Peng H J, et al. Advanced Materials,2019,31(43),1903813.
66 Zhang Y, Li M, Zhong S, et al. Ceramics International,2020,46(7),9614.
67 Wang S, Chen H, Liao J, et al. ACS Energy Letters,2019,4(3),755.
68 Liu S, Li J, Yan X, et al. Advanced Materials,2018,30(12),1706895.
69 Zheng S, Li X, Yan B, et al. Advanced Energy Materials,2017,7(18),1602733.
70 Peng H J, Huang J Q, Cheng X B, et al. Advanced Energy Materials,2017,7(24),1700260.
71 Zhao Y, Song Z, Li X, et al. Energy Storage Materials,2016,2,35.
72 Wang Z, Dou Z, Cui Y, et al. Microporous and Mesoporous Materials,2014,185,92.
73 Zheng J, Tian J, Wu D, et al. Nano Letters,2014,14(5),2345.
74 Han J, Gao S, Wang R, et al. ACS Applied Materials & Interfaces,2019,11(50),46792.
75 Li H, Li C, Liu N, et al. Journal of Alloys and Compounds,2020,818,152868.
76 Bao W, Zhang Z, Qu Y, et al. Journal of Alloys and Compounds,2014,582,334.
77 Chen K, Sun Z, Fang R, et al. Advanced Functional Materials,2018,28(38),1707592.
78 Qi Q, Lv X, Lv W, et al. Journal of Energy Chemistry,2019,39,88.
79 Chen G, Zhong W, Li Y, et al. ACS Applied Materials & Interfaces,2019,11(5),5055.
80 Long B, Qiao Z, Zhang J, et al. Journal of Materials Chemistry A,2019,7(18),11370.
81 Lu Q, Zhu Q, Guo W, et al. Ionics,2019,25(7),3107.
82 Song H, Pan Y, Tang A, et al. Ionics,2019,25(7),3121.
83 Du P, Wei W, Dong Y, et al. Nanoscale,2019,11(20),10097.
84 Dai S, Feng Y, Wang P, et al. Electrochimica Acta,2019,321,134678.
85 Luo Y, Guo R, Li T, et al. ChemSusChem,2019,12(8),1591.
86 Krishnaveni K, Subadevi R, Sivakumar M, et al. Journal of Sulfur Che-mistry,2019,40(4),377.
87 Weret M A. Journal of Power Sources,2019,412,670.
88 Wu F, Chen J, Chen R, et al. The Journal of Physical Chemistry C,2011,115(13),6057.
89 Oschmann B, Park J, Kim C, et al. Chemistry of Materials,2015,27(20),7011.
90 Liu J, Hou S, Li W, et al.Chemistry-An Asian Journal,2019,14(20),3474.
91 Wu Z, Xie J, Xu Z J, et al. Journal of Materials Chemistry A,2019,7(9),4259.
92 Li Z, Zhang J, Guan B, et al. Nature Communications,2016,7,13065.
[1] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[2] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[3] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[4] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[5] 魏满想, 高思睿, 刘宏亮, 王鑫, 付海朋, 何立子. Sn对Al-Mg-Ga-Sn阳极合金电化学性能的影响[J]. 材料导报, 2021, 35(Z1): 311-314.
[6] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[7] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[8] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[9] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[10] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[11] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[12] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[13] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[14] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[15] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed