Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21110278-10    https://doi.org/10.11896/cldb.21110278
  无机非金属及其复合材料 |
尖晶石型铁氧体异质结的构建及用于有机污染物光催化降解的研究进展
陈丹丹, 李燕*, 王爱国
安徽建筑大学先进建筑材料安徽省重点实验室,合肥 230601
Research Progress on Fabrication and Application in Photocatalytic Degradation of Organic Pollutants of Spinel Ferrite Heterojunction
CHEN Dandan, LI Yan*, WANG Aiguo
Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230601, China
下载:  全 文 ( PDF ) ( 10630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业生产的快速发展,有机废水的排放对环境造成了严重的污染。光催化技术利用太阳能降解有机污染物,被视为极具前途的污水处理技术之一。然而传统光催化剂(TiO2、ZnO、ZnS等)对可见光的利用率低、光生载流子复合率高和回收困难等问题限制了其在光催化领域的实际应用。研究者提出将传统半导体与尖晶石型铁氧体材料复合制备尖晶石型铁氧体异质结光催化剂,通过异质结的界面作用抑制光催化剂中光生电荷的复合。同时,尖晶石型铁氧体优异的磁学性能为异质结光催化剂在废水处理中的回收和再利用提供了保证。目前,大量的尖晶石型铁氧体在合成异质结光催化剂领域已经取得了显著的研究成果,例如Fe3O4、CoFe2O4、CuFe2O4、ZnFe2O4和NiFe2O4等。本文将尖晶石型铁氧体异质结分为 Ⅱ 型、肖特基型、Z型 (传统Z型、全固态Z型、直接Z型) 和S型,并具体介绍了各类尖晶石型铁氧体异质结材料光生电荷的分离途径、各类晶石型铁氧体异质结材料目前存在的缺陷以及尖晶石型铁氧体异质结光催化剂在水体治理领域应用的现状,为构建出高载流子分离率的尖晶石型铁氧体异质结光催化剂提供能带匹配理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈丹丹
李燕
王爱国
关键词:  尖晶石型铁氧体  异质结  光催化降解  载流子迁移    
Abstract: Discharge of organic wastewater into the environment following the rapid development of industrial production has led to serious pollution. Photocatalytic technology using solar energy to degrade organic pollutants is considered one of the most valuable strategies for water treatment. However, traditional photocatalysts (e.g., TiO2, ZnO, and ZnS) suffer from the inefficient use of visible light, high recombination rate of photon-generated carriers, and poor recycling performance, which hinder their widespread application. Researchers have proposed the preparation of the spinel ferrite heterojunction photocatalyst by combining a traditional semiconductor and spinel ferrite. Photocarrier recombination is inhibited by the interface of the heterojunction, and the excellent magnetic properties of the ferrite guarantee the recovery and reuse of the photocatalyst in wastewater treatment. At present, a large number of spinel ferrites such as Fe3O4, CoFe2O4, CuFe2O4, ZnFe2O4 and NiFe2O4 have led to remarkable research results in the field of heterojunction photocatalysts. In this paper, the spinel ferrite heterojunctions are divided into type-Ⅱ, Schottky, Z-scheme (traditional, all-solid-state, and direct), and step-scheme heterojunctions. The separation strategies of the photogenerated charges, defects in various spinel ferrite heterojunction materials, as well as their applications in the field of water treatment are discussed, providing a theoretical reference for the construction of spinel ferrite heterojunction photocatalysts with high carrier separation rates.
Key words:  spinel ferrite    heterojunction    photocatalytic degradation    carrier transfer
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  O649  
基金资助: 安徽省高校自然科学基金重点项目 (KJ2020A0476);安徽省重点研究与开发计划项目(202004b11020033)
通讯作者:  *李燕,1985年曲阜师范学院本科毕业,1991年中国科学技术大学硕士毕业;2008年合肥工业大学材料学院材料学专业博士毕业。1995年迄今在安徽建筑大学工作,现为教授。目前主要从事无机功能材料、纳米材料合成与制备化学等方面的研究工作。近年来,在新型无机功能材料领域发表论文30余篇,包括International Journal of Refractory Metals & Hard Materials、Asian Journal of Chemistry、Advanced Materials Research、Journal of Materials Processing Technology、《复合材料学报》《人工晶体学报》和《硅酸盐通报》等。lyc171805@163.com   
作者简介:  陈丹丹,2020年6月毕业于安徽建筑大学,获得理学学士学位。现为安徽建筑大学材料与化学工程学院硕士研究生,在李燕教授的指导下进行研究。目前主要研究领域为光催化复合材料。
引用本文:    
陈丹丹, 李燕, 王爱国. 尖晶石型铁氧体异质结的构建及用于有机污染物光催化降解的研究进展[J]. 材料导报, 2023, 37(16): 21110278-10.
CHEN Dandan, LI Yan, WANG Aiguo. Research Progress on Fabrication and Application in Photocatalytic Degradation of Organic Pollutants of Spinel Ferrite Heterojunction. Materials Reports, 2023, 37(16): 21110278-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110278  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21110278
1 Ambashta R D, Sillanpää M. Journal of Hazardous Materials, 2010, 180(1-3), 38.
2 Wu Y Y, Ji H D, Liu Q M,et al. Journal of Hazardous Materials, 2022, 424, 127563.
3 Zheng J F, Zhu S L, Nie L H. Materials Reports, 2021, 35(Z1), 33 (in Chinese).
郑健飞, 朱思龙, 聂龙辉.材料导报, 2021, 35(Z1), 33.
4 Li P S, Zhou Z, Wang Q, et al. Journal of the American Chemical Society, 2020, 142(28), 12430.
5 Li K N, Zhang S S, Li Y H, et al. Chinese Journal of Catalysis, 2021, 42(1), 3.
6 Abu-Dief A M, Nassar I F, Elsayed W H. Applied Organometallic Chemistry, 2016, 30(11), 917.
7 Yang W, Guo S, Chen J Y. Materials Reports, 2020, 34(11), 11022 (in Chinese).
杨威, 郭盛,陈金毅. 材料导报, 2020, 34(11), 11022.
8 Zhang L P, Jaroniec M. Applied Surface Science, 2018, 430, 2.
9 Raúl Valenzuela. Physics Research International, 2012, 2012, 1.
10 Sun Y J, Liu Y Q, Xu F, et al. Materials Reports, 2020, 34(8), 15021(in Chinese).
孙宇杰, 刘玉芹, 徐芬, 等.材料导报, 2020, 34(8), 15021.
11 Wang D, Astruc D. Chemical Society Reviews, 2017, 46, 816.
12 Wu X L, Xiao P Y, Zhong S X, et al. RSC Advances, 2017, 7, 28145.
13 Lasheras X, Insausti M, Muro I G D, et al. The Journal of Physical Che-mistry C, 2016, 120(6), 3492.
14 Pendergast M T M, Nygaard J M, Ghosh A K, et al. Desalination, 2010, 261(3), 255.
15 Ren C R, Ding X G, Fu H Q, et al. RSC Advances, 2017, 7, 6911.
16 Huang Y F, Zhang L, Ma L, et al. Catalysis Letters, 2020, 150, 815.
17 Chalasani R, Vasudevan S. ACS Nano, 2013, 7(5), 4093.
18 Ferreira L P, Cruz M M, Oliveira M L, et al. RSC Advances, 2016, 6, 73506.
19 Guo X, Ai S S, Yang D, et al. Environmental Technology, 2021, 42(14), 2240.
20 Othman I, Haija M A, Ismail I, et al. Materials Chemistry and Physics, 2017, 392, 701.
21 Li J Q, Liu Z X, Zhu Z F. RSC Advances, 2014, 4, 51302.
22 Fan H G, Chen D D, Ai X F, et al. RSC Advances, 2018, 8(3), 1398.
23 Wang Z L, Du Y C, Liu Y L, et al. RSC Advances, 2016, 6(13), 11040.
24 Chen Y, Wu Q, Bu N S, et al. Chemical Engineering Journal, 2019, 373, 192.
25 Li L J, Xu J, Zhao S, et al. International Journal of Hydrogen Energy, 2021, 46(2), 1934.
26 Vosoughifar M. Journal of Materials Science: Materials in Electronics, 2016, 27, 10449.
27 Al-Anazi A, Abdelraheem W H, Han C, et al. Applied Catalysis B: Environmental, 2012, 26(5), 48.
28 Liang X X, Zhao J, Wang T, et al. ACS Applied Materials & Interfaces, 2021, 13(28), 33034.
29 Ma A Q, Gao Y Q, Zhang D, et al. Surface Innovations, 2021, 9(2-3), 139.
30 Qiu M Y, Zhang T Y, Li B, et al. Materials Reports, 2012, 26(5), 48(in Chinese).
邱明艳, 张天永, 李彬, 等. 材料导报, 2012, 26(5), 48.
31 Mrinal S, Siddhartha M, Sanjay K, et al. RSC Advances, 2016, 6, 58125.
32 Xia Y M, He Z M, Su J B, et al. RSC Advances, 2018, 8, 4284.
33 Liberto G D, Cipriano L A, Tosoni S, et al. Rational Design of Semiconductor Heterojunctions for Photocatalysis, 2021, 27(53), 13306.
34 Gündoğmuş P, Park J, Öztürk A, et al. Ceramics International, 2020, 46(13), 21431.
35 Bai L Q, Huang H W, Yu S, et al. Journal of Energy Chemistry, 2022, 64, 214.
36 Liu C, Zhang Z B, Wang Y Q, et al. Materials Reports, 2019, 33(Z2), 104 (in Chinese).
刘畅, 张志宾, 王有群, 等. 材料导报, 2019, 33(Z2), 104.
37 Chen T, Yin D G, Zhang X Y, et al. Journal of Alloys and Compounds, 2019, 806, 761.
38 Fei W H, Li H Y, Li N J, et al. Solar Energy, 2020, 199, 164.
39 Jahanara K, Farhadi S. RSC Advances, 2019, 9(27), 15615.
40 Samakchi S, Chaibakhsh N, Moradi-Shoeili Z. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 420.
41 Zeng D D, Wang J L, Xie Y, et al. Materials Chemistry and Physics, 2022, 277, 125462.
42 Niaki Z M, Ghorbani M, Ghoreishi S A. Journal of Environmental Health Science and Engineering, 2021, 19, 1583.
43 Nguyen L T T, Vo D N, Nguyen L T, et al. Environmental Technology & Innovation, 2022, 25, 102130.
44 Shi Y X, Li L L, Xu Z, et al. Materials Research Bulletin, 2022,16, 111789.
45 Janani B, Okla M K, Al-Amri S S, et al. Chemosphere, 2022, 17, 134012.
46 Safizade B, Masoudpanah S M, Hasheminiasari M, et al. RSC Advances, 2018, 8(13), 6988.
47 Lallimathi M, Kalisamy P, Suryamathi M, et al. Chemistry Select, 2020, 5(34), 10607.
48 He W, Liu L, Ma T T. Applied Catalysis B: Environmental, 2022, 306, 121107.
49 Abdullahi M M, Xu D, Sun F, et al. Journal of Mate-rials Science: Materials in Electronics, 2022, 33, 2375.
50 Ismael M, Wark M. FlatChem, 2022, 32, 100337.
51 Zhao W, Liang C, Wang B B, et al. ACS Applied Materials & Interfaces, 2017, 9(48), 41927.
52 Palanivel B, Shkir m, Alshahranid T. Diamond and Related Materials, 2021, 112, 108148.
53 Fan Q Z, Zhong L Q, Feng L P, et al. Materials Reports, 2017, 31(5), 106 (in Chinese).
樊启哲, 钟立钦, 冯庐平, 等.材料导报, 2017, 31(5), 106.
54 Luo Y B, Yan X, Zhang J N, et al. Nanoscale, 2018,10, 9212.
55 Liu Y L, Zeng H M, Chai Y Q, et al. Chemical Communications, 2019, 55, 13729.
56 Huang C Y, Lin P T, Cheng H C, et al. Organic Electronics, 2019, 68, 212.
57 Yang L L, Zhou H, Fan T X. Materials Reports, 2014, 28(7), 7 (in Chinese).
杨凌玲, 周涵, 范同祥.材料导报, 2014, 28(7), 7.
58 Liang J X, Wei Y, Zhang J G, et al. Industrial & Engineering Chemistry Research, 2018, 57(12), 4311.
59 Moitra D, Chandel M, Ghosh B K, et al. RSC Advances, 2016, 6(80), 76759.
60 Rahman A, Aadil M, Akhtar M, et al. Ceramics International, 2020, 46(9), 13517.
61 Baynosaa M L, Madya A H, Nguyen V Q, et al. Journal of Colloid and Interface Science, 2020, 561, 459.
62 Gan L, Shang S M, Yuen C W M, et al. Applied Surface Science, 2015, 351, 140.
63 Rathinavel S, Deepika R, Panda D, et al. Inorganic and Nano-Metal Chemistry, 2020, 51(2), 210.
64 Behera A, Kandi D, Mansingh S, et al. Journal of Colloid and Interface Science, 2019, 556, 667.
65 Mansingh S, Padhi D K, Parida K. Applied Surface Science, 2019, 466, 679.
66 Waheed I F, Thayee Al-Janabi O Y, Ibrahim A K, et al. International Journal of Industrial Chemistry, 2020, 11, 13.
67 Angotzi M S, Musinu A, Mameli V, et al. ACS Nano, 2017, 11(8), 7889.
68 Lu Z Y, Yu Z H, Dong J B, et al. RSC Advances, 2017, 7(77), 48894.
69 Bard A J. Journal of Photochemistry, 1979, 10(1), 59.
70 Tada H, Mitsui T, Kiyonaga T, et al. Nature Materials, 2006, 5, 782.
71 Jiang W S, Qu D, An L, et al. Journal of Materials Chemistry A, 2019,7, 18348.
72 Xu Q L, Zhang L Y, Yu J G, et al. Materials Today, 2018, 21(10), 1042.
73 Maeda K. ACS Catalysis, 2013, 3(7), 1486.
74 Zhou T H, Zhang G Z, Zhou H Y, et al. RSC Advances, 2018, 8(49), 28179.
75 Lai Y J, Lee D J. Journal of the Taiwan Institute of Chemical Engineers, 2021, 125, 88.
76 Zhang G Q, Wang Z Q, Wu J H. Nanoscale, 2021,13, 4359.
77 Zhou T H, Zhang G Z, Zhang H W, T, et al. Catalysis Science & Technology, 2018, 8(9), 2402.
78 Li Y L, Zhang Z Q, Pei L Y, et al. Applied Catalysis B: Environmental, 2016, 190, 1.
79 Qi K Z, Cheng B, Yu J G, et al. Chinese Journal of Catalysis, 2017, 38(12), 1936.
80 Wu J J, Shen X P, Miao X L, et al. European Journal of Inorganic Che-mistry, 2017, 21, 2845.
81 Jia Y, Ma H, Liu C. Applied Surface Science, 2019, 463, 854.
82 Li M, Song C, Wu Y, et al. Applied Surface Science, 2019, 478, 744.
83 Huang S, Xu Y, Xie M, et al. RSC Advances, 2017, 7, 30845.
84 He J, Cheng Y H, Wang T Z, et al. Applied Surface Science, 2018, 440(15), 99.
85 Chen Y J, Zhu P F, Duan M, et al. Applied Surface Science, 2019, 486(30), 198.
86 Lu Z Y, Yu Z H, Dong J B, et al. Chemical Engineering Journal, 2018, 337, 228.
87 Xu Q Q, Feng J T, Dong Y Y, et al. Materials Letters, 2022, 307, 131019.
88 Yu J G, Wang S H, Low J X, et al. Physical Chemistry Chemical Physics, 2013, 15, 16883.
89 Li X, Garlisi C, Guan Q S, et al. Materials Today, 2021, 47, 75.
90 Qin S, Lei Y, Guo J, et al. ACS Applied Materials & Interfaces, 2021, 13(22), 25960.
91 Cui H J, Li B B, Zhang Y Z, et al. International Journal of Hydrogen Energy, 2018, 43, 18242.
92 Wang W D, Li N, Hong K Q, et al. Journal of Alloys and Compounds, 2019, 777, 1108.
93 Fei W H, Song Y, Li N J,et al. Environmental Science: Nano, 2019,6, 3123.
94 Koutavarapu R, Tamtam M R, Lee S G, et al. Journal of Environmental Chemical Engineering, 2021, 9(5), 105893.
95 Sin J C, Lam S M, Zeng H H, et al. Separation and Purification Techno-logy, 2020, 250, 117186.
96 Zhang X H, Lin B Y, Li X Y, et al. Chemical Engineering Journal, 2022, 430, 132728.
97 Popat Y, Orlandi M, Patel N, et al. Applied Surface Science, 2019, 30, 584.
98 Ding P, Ji H D, Li P S, et al. Applied Catalysis B: Environmental, 2022, 300, 120633.
99 Ma X X, Liu X K, Zhang X, et al. International Journal of Hydrogen Energy, 2021, 46(62), 31659.
100 Fu J W, Xu Q L, Low J X, et al. Applied Catalysis B: Environmental, 2019, 243, 556.
101 Jin Z L, Zhang L J, Wang G R, et al. Sustainable Energy & Fuels, 2019, 4, 5088.
102 Ma X L, Li D J, Su P, et al. ChemCatChem, 2021, 13(9), 2179.
103 Ge H N, Xu F Y, Cheng B, et al. ChemCatChem, 2019, 11(24), 6301.
104 Xu Q L, Zhang L Y, Xu B C, et al. Chem, 2020, 6(7), 1543.
105 Wang J, Zhang Q, Deng F, et al. Chemical Engineering Journal, 2020, 379, 122264.
106 Iqbal S, Javed M, Hassan S S, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128177.
107 Xu Y R, Zhu X D, Yan H, et al. Chinese Journal of Catalysis, 2022, 43(4), 1111.
108 Das K K, Sahoo D P, Mansingh S. ACS Omega, 2021, 6(45), 30401.
109 Moradi M, Kakavandi B, Bahadoran A, et al. Separation and Purification Technology, 2022, 285, 120313.
110 Yang H, Hao H S, Zhao Y R, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128603.
[1] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[2] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[3] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[4] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[5] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究(英文)[J]. 材料导报, 2022, 36(24): 21030140-8.
[6] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[7] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[8] 修明清, 李天昕, 张国家, 邹龙江, 卢一平. 谐波异质结构AlCoCrFeNi高熵合金的制备、组织演化与力学性能[J]. 材料导报, 2022, 36(14): 22030309-5.
[9] 甘建昌, 胡海平, 苏明, 陈锋, 王辉虎. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 20100188-10.
[10] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[11] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[12] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[13] 胡绍争, 王菲, 李政, 马宏飞, 李萍. 新型全光谱响应W18O49/g-C3N4异质结催化剂的构建及光催化降解有机染料性能研究[J]. 材料导报, 2021, 35(8): 8011-8016.
[14] 伍书祺, 黄泽皑, 李晴川, 饶志强, 周莹. Nb2O5/BiOClⅡ型异质结的构建及增强光催化还原二氧化碳[J]. 材料导报, 2021, 35(6): 6001-6007.
[15] 丁同悦, 陈奕桦, 胡俊俊, 杨本宏, 黄智锋. CeO2/Bi24O31Br10异质结构的制备及可见光催化性能[J]. 材料导报, 2021, 35(22): 22011-22015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed